
Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-202

JAVA™ PROGRAMMING

JOYCE FARRELL

Australia • Brazil • Mexico • Singapore • United Kingdom • United States

N I N T H E d I T I o N

97070_fm_hr_i-xxiv.indd 1 27/02/18 7:34 pm

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-202

This is an electronic version of the print textbook. Due to electronic rights restrictions,
some third party content may be suppressed. Editorial review has deemed that any suppressed
content does not materially affect the overall learning experience. The publisher reserves the right
to remove content from this title at any time if subsequent rights restrictions require it. For
valuable information on pricing, previous editions, changes to current editions, and alternate
formats, please visit www.cengage.com/highered to search by ISBN#, author, title, or keyword for
materials in your areas of interest.

Important Notice: Media content referenced within the product description or the product
text may not be available in the eBook version.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-202

Java™ Programming, Ninth Edition
Joyce Farrell

SVP, GM Skills: Jonathan Lau

Product Team Manager: Kristin McNary

Associate Product Manager:
Kate Mason

Executive Director of Content Design,
Skills: Marah Bellegarde

Director, Learning Design –
Skills Computing: Leigh Hefferon

Learning Designer:
Natalie Onderdonk

Product Assistant: Jake Toth

Marketing Director: Michele McTighe

Marketing Manager: Stephanie Albracht

Content Project Manager:
Michele Stulga

Senior Designer: Diana Graham

Production Service/Composition:
SPi Global

Cover image: Colormos/Photodisc
/Getty Images

© 2019, 2016, 2014, 2012 Cengage Learning, Inc.

Unless otherwise noted, all content is © Cengage.

ALL RIGHTS RESERVED. No part of this work covered by the copyright
herein may be reproduced or distributed in any form or by any
means, except as permitted by U.S. copyright law, without the prior
written permission of the copyright owner.

Unless otherwise noted all screenshots are courtesy of Microsoft
Corporation.

Unless otherwise noted all tables/figures exhibits are © 2019 Cengage®.

For product information and technology assistance, contact us at
Cengage Customer & Sales Support, 1-800-354-9706

or support.cengage.com.

For permission to use material from this text or product, submit
all requests online at www.cengage.com/permissions.

Library of Congress Control Number: 2018933919

Softbound ISBN: 978-1-337-39707-0

Loose Leaf ISBN: 978-1-337-68590-0

Cengage
20 Channel Center Street
Boston, MA 02210
USA

Cengage is a leading provider of customized learning solutions with
employees residing in nearly 40 different countries and sales in more
than 125 countries around the world. Find your local representative at
www.cengage.com.

Cengage products are represented in Canada by Nelson Education, Ltd.

To learn more about Cengage platforms and services, visit
www.cengage.com.

To register or access your online learning solution or purchase
materials for your course, visit www.cengagebrain.com.

Notice to the Reader
Publisher does not warrant or guarantee any of the products described herein or perform any independent analysis in
connection with any of the product information contained herein. Publisher does not assume, and expressly disclaims,
any obligation to obtain and include information other than that provided to it by the manufacturer. The reader is
expressly warned to consider and adopt all safety precautions that might be indicated by the activities described herein
and to avoid all potential hazards. By following the instructions contained herein, the reader willingly assumes all risks in
connection with such instructions. The publisher makes no representations or warranties of any kind, including but not
limited to, the warranties of fitness for particular purpose or merchantability, nor are any such representations implied
with respect to the material set forth herein, and the publisher takes no responsibility with respect to such material. The
publisher shall not be liable for any special, consequential, or exemplary damages resulting, in whole or part, from the
readers’ use of, or reliance upon, this material.

Printed in the United States of America
Print Number: 01 Print Year: 2018

97070_fm_hr_i-xxiv.indd 2 27/02/18 7:34 pm

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-202

Brief Contents

 Preface � � � � � � � � � � � � � � � � xiv

CHAPTER 1 Creat ing Java Programs � � � � � � � � � � 1
CHAPTER 2 Us ing Data � � � � � � � � � � � � � � � � 49
CHAPTER 3 Us ing Methods, Classes, and Objects � � � 110
CHAPTER 4 More Object Concepts � � � � � � � � � � 170
CHAPTER 5 Making Decis ions � � � � � � � � � � � � 230
CHAPTER 6 Looping � � � � � � � � � � � � � � � � 283
CHAPTER 7 Characters, Str ings, and the

StringBuilder � � � � � � � � � � � � � 330
CHAPTER 8 Arrays � � � � � � � � � � � � � � � � � 369
CHAPTER 9 Advanced Array Concepts � � � � � � � � 416
CHAPTER 10 Introduct ion to Inher i tance � � � � � � � � 467
CHAPTER 11 Advanced Inher i tance Concepts � � � � � � 513
CHAPTER 12 Except ion Handl ing � � � � � � � � � � � 570
CHAPTER 13 F i le Input and Output � � � � � � � � � � � 635
CHAPTER 14 Introduct ion to Swing Components � � � � 698
CHAPTER 15 Us ing JavaFX and Scene Bui lder � � � � � � 758
APPENdIx A Work ing wi th the Java Plat form � � � � � � 799
APPENdIx B Data Representat ion � � � � � � � � � � � 804
APPENdIx C Formatt ing Output � � � � � � � � � � � � 810
APPENdIx d Generat ing Random Numbers � � � � � � � 820
APPENdIx E Javadoc � � � � � � � � � � � � � � � � 826
 G lossary � � � � � � � � � � � � � � � � 834
 Index � � � � � � � � � � � � � � � � � 853

iii

97070_fm_hr_i-xxiv.indd 3 27/02/18 7:34 pm

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-202

97070_fm_hr_i-xxiv.indd 4 27/02/18 7:34 pm

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-202

Table of Contents

 Preface � � � � � � � � � � � � � � � � xiv

CHAPTER 1 Creat ing Java Programs � � � � � � � � � � 1

Learning Programming Terminology � � � � � � � � � � � � � 2
Comparing Procedural and Object-Oriented

Programming Concepts � � � � � � � � � � � � � � � � � � 5
Procedural Programming � � � � � � � � � � � � � � � � � 5
Object-Oriented Programming � � � � � � � � � � � � � � 6
Understanding Classes, Objects, and Encapsulation � � � � 7
Understanding Inheritance and Polymorphism � � � � � � � 9

Features of the Java Programming Language � � � � � � � 10
Analyzing a Java Application that Produces

Console Output � 12
Understanding the Statement that Produces

the Output � 13
Understanding the First Class � � � � � � � � � � � � 15
Understanding the main() Method � � � � � � � � � � � 17
Indent Style � 19
Saving a Java Class � � � � � � � � � � � � � � � � � � 20

Compiling a Java Class and Correcting Syntax Errors � � � � 22
Compiling a Java Class � � � � � � � � � � � � � � � � 22
Correcting Syntax Errors � � � � � � � � � � � � � � � � 23

Running a Java Application and Correcting Logic Errors � � � 29
Running a Java Application � � � � � � � � � � � � � � � 29
Modifying a Compiled Java Class � � � � � � � � � � � � 29
Correcting Logic Errors � � � � � � � � � � � � � � � � 31

Adding Comments to a Java Class � � � � � � � � � � � � 32
Creating a Java Application that Produces GUI Output� � � � 35
Finding Help � 38
Don’t Do It � 39
Key Terms � 41
Chapter Summary � 41
Exercises � 45

v

97070_fm_hr_i-xxiv.indd 5 27/02/18 7:34 pm

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-202

vi

 C o N T E N T s

CHAPTER 2 Us ing Data � � � � � � � � � � � � � � � � 49

Declaring and Using Constants and Variables � � � � � � � 50
Declaring Variables � � � � � � � � � � � � � � � � � � 51
Declaring Named Constants � � � � � � � � � � � � � � 52
The Scope of Variables and Constants � � � � � � � � � 54
Concatenating Strings to Variables and Constants � � � � 54
Pitfall: Forgetting that a Variable Holds One Value

at a Time � 57
Learning About Integer Data Types � � � � � � � � � � � 60

Using the boolean Data Type � � � � � � � � � � � � � � 65
Learning About Floating-Point Data Types � � � � � � � � � 67
Using the char Data Type � � � � � � � � � � � � � � � � 68
Using the Scanner Class to Accept Keyboard Input � � � � 74

Pitfall: Using nextLine() Following One of
the Other Scanner Input Methods � � � � � � � � � � � 77

Using the JOptionPane Class to Accept GUI Input� � � � � 82
Using Input Dialog Boxes� � � � � � � � � � � � � � � � 83
Using Confirm Dialog Boxes � � � � � � � � � � � � � � 86

Performing Arithmetic Using Variables and Constants � � � � 88
Associativity and Precedence� � � � � � � � � � � � � � 89
Writing Arithmetic Statements Efficiently � � � � � � � � 91
Pitfall: Not Understanding Imprecision in

Floating-Point Numbers � � � � � � � � � � � � � � � � 91
Understanding Type Conversion� � � � � � � � � � � � � � 96

Automatic Type Conversion� � � � � � � � � � � � � � � 96
Explicit Type Conversions � � � � � � � � � � � � � � � 97

Don’t Do It �101
Key Terms �102
Chapter Summary � � � � � � � � � � � � � � � � � � � �102
Exercises � �105

CHAPTER 3 Us ing Methods, Classes, and Objects � � � 110

Understanding Method Calls and Placement � � � � � � � �111
Understanding Method Construction� � � � � � � � � � � �114

Access Specifiers � � � � � � � � � � � � � � � � � � �115
Return Type � �116
Method Name � �116
Parentheses �117

Adding Parameters to Methods � � � � � � � � � � � � � �121
Creating a Method that Receives a Single Parameter � � �122
Creating a Method that Requires Multiple Parameters � � �125

Creating Methods that Return Values � � � � � � � � � � �127
Chaining Method Calls � � � � � � � � � � � � � � � � �129

97070_fm_hr_i-xxiv.indd 6 27/02/18 7:34 pm

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-202

vii

Learning About Classes and Objects � � � � � � � � � � �133
Creating a Class �136
Creating Instance Methods in a Class � � � � � � � � � � �138

Organizing Classes � � � � � � � � � � � � � � � � � �141
Declaring Objects and Using Their Methods � � � � � � � �145

Understanding Data Hiding � � � � � � � � � � � � � � �147
An Introduction to Using Constructors � � � � � � � � � � �150
Understanding that Classes Are Data Types � � � � � � � �154
Don’t Do It �158
Key Terms �158
Chapter Summary � � � � � � � � � � � � � � � � � � � �159
Exercises � �163

CHAPTER 4 More Object Concepts � � � � � � � � � � 170

Understanding Blocks and Scope � � � � � � � � � � � � �171
Overloading a Method � � � � � � � � � � � � � � � � � �179

Automatic Type Promotion in Method Calls � � � � � � � �181
Learning About Ambiguity � � � � � � � � � � � � � � � �185
Creating and Calling Constructors with Parameters � � � � �187

Overloading Constructors � � � � � � � � � � � � � � �188
Learning About the this Reference � � � � � � � � � � � �192

Using the this Reference to Make Overloaded
Constructors More Efficient � � � � � � � � � � � � � �195

Using static Fields � � � � � � � � � � � � � � � � � �199
Using Constant Fields � � � � � � � � � � � � � � � � �201

Using Automatically Imported, Prewritten
Constants and Methods � � � � � � � � � � � � � � � � �206
The Math Class � � � � � � � � � � � � � � � � � � � �206
Importing Classes that Are Not Imported Automatically � �208
Using the LocalDate Class � � � � � � � � � � � � � �210

Understanding Composition and Nested Classes � � � � � �216
Composition �216
Nested Classes � � � � � � � � � � � � � � � � � � � �218

Don’t Do It �220
Key Terms �220
Chapter Summary � � � � � � � � � � � � � � � � � � � �220
Exercises � �224

CHAPTER 5 Making Decis ions � � � � � � � � � � � � 230

Planning Decision-Making Logic � � � � � � � � � � � � � �231
The if and if…else Statements � � � � � � � � � � � � �233

The if Statement � � � � � � � � � � � � � � � � � � �233
Pitfall: Misplacing a Semicolon in an if Statement � � � �234

C o n t e n t s

97070_fm_hr_i-xxiv.indd 7 27/02/18 7:34 pm

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-202

viii

 C o N T E N T s

Pitfall: Using the Assignment Operator Instead
of the Equivalency Operator � � � � � � � � � � � � � �235

Pitfall: Attempting to Compare Objects Using
the Relational Operators � � � � � � � � � � � � � � �236

The if…else Statement � � � � � � � � � � � � � � � �236
Using Multiple Statements in if and if…else Clauses � � �239
Nesting if and if…else Statements � � � � � � � � � � �245
Using Logical AND and OR Operators � � � � � � � � � � �247

The AND Operator � � � � � � � � � � � � � � � � � � �247
The OR Operator � � � � � � � � � � � � � � � � � � �249
Short-Circuit Evaluation � � � � � � � � � � � � � � � �250

Making Accurate and Efficient Decisions� � � � � � � � � �253
Making Accurate Range Checks� � � � � � � � � � � � �253
Making Efficient Range Checks � � � � � � � � � � � � �256
Using && and || Appropriately � � � � � � � � � � � � �256

Using the switch Statement � � � � � � � � � � � � � � �258
Using the Conditional and NOT Operators � � � � � � � � �264

Using the NOT Operator � � � � � � � � � � � � � � � �265
Understanding Operator Precedence � � � � � � � � � � �266
Adding Decisions and Constructors to Instance

Methods� �269
Don’t Do It �272
Key Terms �273
Chapter Summary � � � � � � � � � � � � � � � � � � � �273
Exercises � �277

CHAPTER 6 Looping � � � � � � � � � � � � � � � � 283

Learning About the Loop Structure � � � � � � � � � � � �284
Creating while Loops � � � � � � � � � � � � � � � � � �285

Writing a Definite while Loop � � � � � � � � � � � � �285
Pitfall: Failing to Alter the Loop Control Variable

Within the Loop Body � � � � � � � � � � � � � � � � �287
Pitfall: Unintentionally Creating a Loop with

an Empty Body� � � � � � � � � � � � � � � � � � � �288
Altering a Definite Loop’s Control Variable � � � � � � � �289
Writing an Indefinite while Loop � � � � � � � � � � � �290
Validating Data �292

Using Shortcut Arithmetic Operators � � � � � � � � � � �296
Creating a for Loop� � � � � � � � � � � � � � � � � � �300

Unconventional for Loops � � � � � � � � � � � � � � �302
Learning How and When to Use a do…while Loop � � � � �306
Learning About Nested Loops � � � � � � � � � � � � � �308
Improving Loop Performance � � � � � � � � � � � � � � �313

Avoiding Unnecessary Operations � � � � � � � � � � � �314

97070_fm_hr_i-xxiv.indd 8 27/02/18 7:34 pm

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-202

ix

Considering the Order of Evaluation of
Short-Circuit Operators � � � � � � � � � � � � � � � �314

Comparing to Zero � � � � � � � � � � � � � � � � � �315
Employing Loop Fusion � � � � � � � � � � � � � � � �316
A Final Note on Improving Loop Performance � � � � � �317

Don’t Do It �320
Key Terms �320
Chapter Summary � � � � � � � � � � � � � � � � � � � �320
Exercises � �324

CHAPTER 7 Characters, Str ings, and the
StringBuilder � � � � � � � � � � � � � 330

Understanding String Data Problems � � � � � � � � � � �331
Using Character Class Methods� � � � � � � � � � � � �332
Declaring and Comparing String Objects � � � � � � � � �336

Comparing String Values � � � � � � � � � � � � � � �336
Empty and null Strings � � � � � � � � � � � � � � � �340

Using a Variety of String Methods � � � � � � � � � � � �342
Converting String Objects to Numbers� � � � � � � � �347

Learning About the StringBuilder
and StringBuffer Classes � � � � � � � � � � � � � �352

Don’t Do It �358
Key Terms �359
Chapter Summary � � � � � � � � � � � � � � � � � � � �359
Exercises � �362

CHAPTER 8 Arrays � � � � � � � � � � � � � � � � � 369

Declaring an Array� � � � � � � � � � � � � � � � � � � �370
Initializing an Array � � � � � � � � � � � � � � � � � � �375
Using Variable Subscripts with an Array � � � � � � � � � �378

Using the Enhanced for Loop � � � � � � � � � � � � �380
Using Part of an Array � � � � � � � � � � � � � � � � �380

Declaring and Using Arrays of Objects � � � � � � � � � �383
Using the Enhanced for Loop with Objects � � � � � � �385
Manipulating Arrays of Strings � � � � � � � � � � � �385

Searching an Array and Using Parallel Arrays � � � � � � �392
Using Parallel Arrays � � � � � � � � � � � � � � � � �393
Searching an Array for a Range Match� � � � � � � � � �395

Passing Arrays to and Returning Arrays from Methods � � �399
Returning an Array from a Method � � � � � � � � � � �402

Don’t Do It �405
Key Terms �405
Chapter Summary � � � � � � � � � � � � � � � � � � � �405
Exercises � �409

C o n t e n t s

97070_fm_hr_i-xxiv.indd 9 27/02/18 7:34 pm

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-202

x

 C o N T E N T s

CHAPTER 9 Advanced Array Concepts � � � � � � � � 416

Sorting Array Elements Using the Bubble Sort Algorithm � �417
Using the Bubble Sort Algorithm � � � � � � � � � � � �418
Improving Bubble Sort Efficiency � � � � � � � � � � � �420
Sorting Arrays of Objects � � � � � � � � � � � � � � �420

Sorting Array Elements Using the Insertion
Sort Algorithm � �425

Using Two-Dimensional and Other Multidimensional Arrays� �430
Passing a Two-Dimensional Array to a Method � � � � � �433
Using the length Field with a Two-Dimensional Array� � �433
Understanding Jagged Arrays � � � � � � � � � � � � �434
Using Other Multidimensional Arrays � � � � � � � � � �435

Using the Arrays Class � � � � � � � � � � � � � � � � �438
Using the ArrayList Class � � � � � � � � � � � � � � �446
Creating Enumerations � � � � � � � � � � � � � � � � � �449
Don’t Do It �456
Key Terms �456
Chapter Summary � � � � � � � � � � � � � � � � � � � �456
Exercises � �460

CHAPTER 10 Introduct ion to Inher i tance � � � � � � � � 467

Learning About the Concept of Inheritance � � � � � � � � �468
Diagramming Inheritance Using the UML � � � � � � � � �468
Inheritance Terminology � � � � � � � � � � � � � � � �470

Extending Classes � � � � � � � � � � � � � � � � � � � �472
Overriding Superclass Methods � � � � � � � � � � � � � �479

Using the @Override Tag � � � � � � � � � � � � � � �480
Calling Constructors During Inheritance � � � � � � � � � �483

Using Superclass Constructors that Require Arguments � �484
Accessing Superclass Methods � � � � � � � � � � � � � �489

Comparing this and super � � � � � � � � � � � � � �491
Employing Information Hiding � � � � � � � � � � � � � � �493
Methods You Cannot Override � � � � � � � � � � � � � �495

A Subclass Cannot Override static Methods
in Its Superclass � � � � � � � � � � � � � � � � � � �495

A Subclass Cannot Override final Methods
in Its Superclass � � � � � � � � � � � � � � � � � � �499

A Subclass Cannot Override Methods in a
final Superclass � � � � � � � � � � � � � � � � � �501

Don’t Do It �502
Key Terms �502
Chapter Summary � � � � � � � � � � � � � � � � � � � �503
Exercises � �506

97070_fm_hr_i-xxiv.indd 10 27/02/18 7:34 pm

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-202

xi

CHAPTER 11 Advanced Inher i tance Concepts � � � � � � 513

Creating and Using Abstract Classes � � � � � � � � � � �514
Using Dynamic Method Binding � � � � � � � � � � � � � �523

Using a Superclass as a Method Parameter Type � � � � �525
Creating Arrays of Subclass Objects � � � � � � � � � � �527
Using the Object Class and Its Methods � � � � � � � � �530

Using the toString() Method� � � � � � � � � � � � �532
Using the equals() Method � � � � � � � � � � � � � �535

Using Inheritance to Achieve Good Software Design � � � �540
Creating and Using Interfaces � � � � � � � � � � � � � �541

Creating Interfaces to Store Related Constants � � � � �548
Using Anonymous Inner Classes and Lambda Expressions � �552

Lambda Expressions� � � � � � � � � � � � � � � � � �554
Creating and Using Packages� � � � � � � � � � � � � � �555
Don’t Do It �557
Key Terms �558
Chapter Summary � � � � � � � � � � � � � � � � � � � �558
Exercises � �562

CHAPTER 12 Except ion Handl ing � � � � � � � � � � � 570

Learning About Exceptions � � � � � � � � � � � � � � � �571
Trying Code and Catching Exceptions � � � � � � � � � � �576

Using a try Block to Make Programs “Foolproof” � � � �580
Declaring and Initializing Variables in try…catch

Blocks �582
Throwing and Catching Multiple Exceptions � � � � � � � �585
Using the finally Block � � � � � � � � � � � � � � � �591
Understanding the Advantages of Exception Handling � � � �593
Specifying the Exceptions that a Method Can Throw � � � �596
Tracing Exceptions Through the Call Stack� � � � � � � � �600
Creating Your Own Exception Classes � � � � � � � � � �605
Using Assertions �608
Displaying the Virtual Keyboard � � � � � � � � � � � � � �622
Don’t Do It �625
Key Terms �626
Chapter Summary � � � � � � � � � � � � � � � � � � � �626
Exercises � �630

CHAPTER 13 F i le Input and Output � � � � � � � � � � 635

Understanding Computer Files � � � � � � � � � � � � � �636
Using the Path and Files Classes � � � � � � � � � � � �638

Creating a Path �638
Retrieving Information About a Path � � � � � � � � � � �640

C o n t e n t s

97070_fm_hr_i-xxiv.indd 11 27/02/18 7:34 pm

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-202

xii

 C o N T E N T s

Converting a Relative Path to an Absolute One � � � � � �641
Checking File Accessibility � � � � � � � � � � � � � � �642
Deleting a Path �643
Determining File Attributes � � � � � � � � � � � � � � �645

File Organization, Streams, and Buffers � � � � � � � � � �648
Using Java’s IO Classes � � � � � � � � � � � � � � � � �651

Writing to a File � � � � � � � � � � � � � � � � � � � �654
Reading from a File � � � � � � � � � � � � � � � � � �656

Creating and Using Sequential Data Files � � � � � � � � �657
Learning About Random Access Files � � � � � � � � � � �663
Writing Records to a Random Access Data File � � � � � � �667
Reading Records from a Random Access Data File � � � � �673

Accessing a Random Access File Sequentially � � � � � �674
Accessing a Random Access File Randomly � � � � � � �675

Don’t Do It �689
Key Terms �689
Chapter Summary � � � � � � � � � � � � � � � � � � � �689
Exercises � �693

CHAPTER 14 Introduct ion to Swing Components � � � � 698

Understanding Swing Components � � � � � � � � � � � �699
Using the JFrame Class � � � � � � � � � � � � � � � � �700

Customizing a JFrame’s Appearance � � � � � � � � � �704
Using the JLabel Class � � � � � � � � � � � � � � � � �708

Changing a JLabel’s Font � � � � � � � � � � � � � � �710
Using a Layout Manager � � � � � � � � � � � � � � � � �712
Extending the JFrame Class � � � � � � � � � � � � � � �715
Adding JTextFields and JButtons to a JFrame � � � � �718

Adding JTextFields � � � � � � � � � � � � � � � � �718
Adding JButtons � � � � � � � � � � � � � � � � � � �720

Learning About Event-Driven Programming � � � � � � � � �724
Preparing Your Class to Accept Event Messages � � � � �725
Telling Your Class to Expect Events to Happen � � � � � �726
Telling Your Class How to Respond to Events � � � � � �726
An Event-Driven Program � � � � � � � � � � � � � � � �727
Using Multiple Event Sources � � � � � � � � � � � � � �728
Using the setEnabled() Method � � � � � � � � � � �730

Understanding Swing Event Listeners � � � � � � � � � � �733
Using the JCheckBox, ButtonGroup,

and JComboBox Classes � � � � � � � � � � � � � � � �736
The JCheckBox Class � � � � � � � � � � � � � � � � �736
The ButtonGroup Class � � � � � � � � � � � � � � �740
The JComboBox Class � � � � � � � � � � � � � � � � �741

97070_fm_hr_i-xxiv.indd 12 27/02/18 7:34 pm

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-202

xiii

Don’t Do It �748
Key Terms �749
Chapter Summary � � � � � � � � � � � � � � � � � � � �749
Exercises � �753

CHAPTER 15 Us ing JavaFX and Scene Bui lder � � � � � 758

What Is JavaFX? � �759
The Life Cycle of JavaFX Applications � � � � � � � � � � �760
Understanding JavaFX Structure: Stage, Scene,

Panes, and Widgets � � � � � � � � � � � � � � � � � �762
Deploying JavaFX Applications � � � � � � � � � � � � � �768
Creating JavaFX Applications Using Scene Builder � � � � �768

Scene Builder Sections � � � � � � � � � � � � � � � �773
Using Widgets as Design Elements in FXML Layouts � � �774

Using CSS to Create Visual Effects � � � � � � � � � � � �778
Creating Animations in JavaFX � � � � � � � � � � � � � �785
Don’t Do It �790
Key Terms �790
Chapter Summary � � � � � � � � � � � � � � � � � � � �790
Exercises � �795

APPENdIx A Work ing wi th the Java Plat form � � � � � � 799

APPENdIx B Data Representat ion � � � � � � � � � � � 804

APPENdIx C Formatt ing Output � � � � � � � � � � � � 810

APPENdIx d Generat ing Random Numbers � � � � � � � 820

APPENdIx E Javadoc � � � � � � � � � � � � � � � � 826

 G lossary � � � � � � � � � � � � � � � � 834

 Index � � � � � � � � � � � � � � � � � 853

C o n t e n t s

97070_fm_hr_i-xxiv.indd 13 27/02/18 7:34 pm

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-202

Preface

Java Programming, Ninth Edition, provides the beginning programmer with a guide to
developing applications using the Java programming language. Java is popular among
professional programmers because it can be used to build visually interesting graphical user
interface (GUI) and Web-based applications. Java also provides an excellent environment
for the beginning programmer—a student can quickly build useful programs while learning
the basics of structured and object-oriented programming techniques.

This textbook assumes that you have little or no programming experience. It provides
a solid background in good object-oriented programming techniques and introduces
terminology using clear, familiar language. The programming examples are business
examples; they do not assume a mathematical background beyond high school business
math. In addition, the examples illustrate only one or two major points; they do not
contain so many features that you become lost following irrelevant and extraneous details.
Complete, working programs appear frequently in each chapter; these examples help
students make the transition from the theoretical to the practical. The code presented in
each chapter also can be downloaded from the publisher’s website, so students easily can
run the programs and experiment with changes to them.

The student using Java Programming, Ninth Edition, builds applications from the bottom
up rather than starting with existing objects. This facilitates a deeper understanding of
the concepts used in object-oriented programming and engenders appreciation for the
existing objects students use as their knowledge of the language advances. When students
complete this book, they will know how to modify and create simple Java programs,
and they will have the tools to create more complex examples. They also will have a
fundamental knowledge about object-oriented programming, which will serve them well in
advanced Java courses or in studying other object-oriented languages such as C++, C#, and
Visual Basic.

organization and Coverage
Java Programming, Ninth Edition, presents Java programming concepts, enforcing good
style, logical thinking, and the object-oriented paradigm. Objects are covered right from
the beginning, earlier than in many other textbooks. You create your first Java program
in Chapter 1. Chapters 2, 3, and 4 increase your understanding about how data, classes,
objects, and methods interact in an object-oriented environment.

Chapters 5 and 6 explore input and repetition structures, which are the backbone of
programming logic and essential to creating useful programs in any language. You learn
the special considerations of string and array manipulation in Chapters 7, 8, and 9.

xiv

97070_fm_hr_i-xxiv.indd 14 27/02/18 7:34 pm

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-202

xv

New in This Edition

Chapters 10, 11, and 12 thoroughly cover inheritance and exception handling. Inheritance
is the object-oriented concept that allows you to develop new objects quickly by adapting
the features of existing objects; exception handling is the object-oriented approach to
handling errors. Both are important concepts in object-oriented design. Chapter 13
provides information about handling files so you can store and retrieve program output.

Chapter 14 introduces GUI Swing components, which are used to create visually pleasing,
user-friendly, interactive applications.

Chapter 15 introduces JavaFX, which is the newest platform for creating and delivering
applications for the desktop and the Internet. Chapter 15 is written by Sandra Lavallee,
a professor and Computer and Design Technologies Department chairperson at Lakes
Region Community College in Laconia, New Hampshire.

New in This Edition
The following features are new for the Ninth Edition:

 • Java 9e: All programs have been tested using Java 9e, the newest edition of Java.

 • Windows 10: All programs have been tested in Windows 10, and all screen shots have
been taken in this environment.

 • Programming exercises: Each chapter contains several new programming exercises
not seen in previous editions. All exercises and their solutions from the previous edition
that were replaced in this edition are still available on the Instructor Companion site.

 • Anonymous inner classes and lambda expressions: These two new topics are
introduced in this edition of the book.

 • JavaFX: This edition includes coverage of JavaFX.

Additionally, Java Programming, Ninth Edition, includes the following features:

 • OBJECTIVES: Each chapter begins with a list of objectives so you know the topics that
will be presented in the chapter. In addition to providing a quick reference to topics
 covered, this feature provides a useful study aid.

 • YOU DO IT: In each chapter, step-by-step exercises help students create multiple
working programs that emphasize the logic a programmer uses in choosing statements
to include. These sections provide a means for students to achieve success on their
own—even those in online or distance learning classes.

 • NOTES: These highlighted tips provide additional information—for example, an
 alternative method of performing a procedure, another term for a concept, background
information about a technique, or a common error to avoid.

 • EMPHASIS ON STUDENT RESEARCH: The student frequently is directed to
the Java website to investigate classes and methods. Computer languages evolve,
and programming professionals must understand how to find the latest language
improvements. This book encourages independent research.

P R E FA C E

97070_fm_hr_i-xxiv.indd 15 27/02/18 7:34 pm

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-202

xvi

 New in This EditionP R E FA C E

 • FIGURES: Each chapter contains many figures. Code figures are most frequently
25 lines or fewer, illustrating one concept at a time. Frequent screen shots show exactly
how program output appears. Callouts appear where needed to emphasize a point.

 • COLOR: The code figures in each chapter contain all Java keywords in blue. This helps
students identify keywords more easily, distinguishing them from programmer-selected
names.

 • FILES: More than 200 student files can be downloaded from the publisher’s website.
Most files contain the code presented in the figures in each chapter; students can run
the code for themselves, view the output, and make changes to the code to observe
the effects. Other files include debugging exercises that help students improve their
programming skills.

 • TWO TRUTHS & A LIE: A short quiz reviews each chapter section, with answers
provided. This quiz contains three statements based on the preceding section of
text—two statements are true, and one is false. Over the years, students have requested
answers to problems, but we have hesitated to distribute them in case instructors want
to use problems as assignments or test questions. These true-false quizzes provide
students with immediate feedback as they read, without “giving away” answers to the
multiple-choice questions and programming exercises.

 • DON’T DO IT: This section at the end of each chapter summarizes common mistakes
and pitfalls that plague new programmers while learning the current topic.

 • KEY TERMS: Each chapter includes a list of newly introduced vocabulary, shown in
the order of appearance in the text. The list of key terms provides a short review of the
major concepts in the chapter.

 • SUMMARIES: Following each chapter is a summary that recaps the programming
concepts and techniques covered in the chapter. This feature provides a concise means
for students to check their understanding of the main points in each chapter.

 • REVIEW QUESTIONS: Each chapter includes 20 multiple-choice questions that serve
as a review of chapter topics.

 • GAME ZONE: Each chapter provides one or more exercises in which students can
create interactive games using the programming techniques learned up to that point;
50 game programs are suggested in the book. The games are fun to create and play;
writing them motivates students to master the necessary programming techniques.
Students might exchange completed game programs with each other, suggesting
improvements and discovering alternate ways to accomplish tasks.

 • CASES: Each chapter contains two running case problems. These cases represent
projects that continue to grow throughout a semester using concepts learned in each
new chapter. Two cases allow instructors to assign different cases in alternate semesters
or to divide students in a class into two case teams.

 • GLOSSARY: A glossary contains definitions for all key terms in the book.

97070_fm_hr_i-xxiv.indd 16 27/02/18 7:34 pm

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-202

xvii

Instructor Companion Site

 • APPENDICES: This edition includes useful appendices on working with the Java
platform, data representation, formatting output, generating random numbers, and
creating Javadoc comments.

 • QUALITY: Every program example, exercise, and game solution was tested by the
author and then tested again by a quality assurance team using Java Standard Edition
(SE) 9, the most recent version available.

Instructor Resources
MindTap
MindTap activities for Java Programming, Ninth Edition are designed to help students
master the skills they need in today’s workforce. Research shows employers need critical
thinkers, troubleshooters, and creative problem-solvers to stay relevant in our fast-paced,
technology-driven world. MindTap helps you achieve this with assignments and activities
that provide hands-on practice and real-life relevance. Students are guided through
assignments that help them master basic knowledge and understanding before moving on
to more challenging problems.

All MindTap activities and assignments are tied to defined unit learning objectives.
Hands-on coding labs provide real-life application and practice. Readings and dynamic
visualizations support the lecture, while a post-course assessment measures exactly
how much a student has learned. MindTap provides the analytics and reporting to easily
see where the class stands in terms of progress, engagement, and completion rates.
Use the content and learning path as-is, or pick-and-choose how our materials will wrap
around yours. You control what the students see and when they see it. Learn more at
http://www.cengage.com/mindtap/.

The Java Programming MindTap also includes:

 • Unit Quizzes: Students apply what they have learned in each unit by taking the quizzes
provided in the learning path.

 • Video Lessons: Each unit is accompanied by video lessons that help to explain
important unit concepts. These videos were created and narrated by the author.

 • Interactive Study Aids: Flashcards and crossword puzzles help users review main
concepts from the units and coding Snippets allow students to practice key coding
concepts.

Instructor Companion site
The following teaching tools are available for download at the Companion Site for this text.
Simply search for this text at www.cengagebrain.com and choose “Instructor Downloads.”
An instructor login is required.

P R E FA C E

97070_fm_hr_i-xxiv.indd 17 27/02/18 7:34 pm

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-202

xviii

 AcknowledgmentsP R E FA C E

 • Instructor’s Manual: The Instructor’s Manual that accompanies this textbook includes
additional instructional material to assist in class preparation, including items such as
Overviews, Chapter Objectives, Teaching Tips, Quick Quizzes, Class Discussion Topics,
Additional Projects, Additional Resources, and Key Terms. A sample syllabus also is
available.

 • Test Bank: Cengage Testing Powered by Cognero is a flexible, online system that allows
you to:

° Author, edit, and manage test bank content from multiple Cengage solutions.

° Create multiple test versions in an instant.

° Deliver tests from your LMS, your classroom, or wherever you want.

 • PowerPoint Presentations: This text provides PowerPoint slides to accompany each
chapter. Slides can be used to guide classroom presentations, to make available to
students for chapter review, or to print as classroom handouts.

 • Student Files: Files are provided for every figure in the text. Instructors can use the
files to customize PowerPoint slides, illustrate quizzes, or create handouts.

 • Solutions: Solutions to all programming exercises are available. If an input file is
needed to run a programming exercise, it is included with the solution file.

 • Data Files: Data files necessary to complete the steps and projects in the book are
available at www.cengagebrain.com, or your instructor will provide the data files to you.

Acknowledgments
I would like to thank all of the people who helped to make this book a reality, including
Natalie Onderdonk, Learning Designer; Michele Stulga, Content Project Manager; and
John Freitas, Quality Assurance Tester. I am lucky to work with these professionals who are
dedicated to producing high-quality instructional materials.

I am also grateful to the reviewers who provided comments and encouragement during this
book’s development, including Cliff Brozo, Monroe College; Fred D’Angelo, University of
Arizona; Cassandra Henderson, Albany Technical College; Zack Hubbard, Rowan-Cabarrus
Community College; and Sandra Lavallee, Lakes Region Community College.

Thanks, too, to my husband, Geoff, for his constant support, advice, and encouragement.
Finally, this book is dedicated to George Edward Farrell Peterson and Clifford Geoffrey
 Farrell Peterson. You each had a book dedicated to you earlier, but those books were
 published before I knew your names. Now you are here, and I love you!

Joyce Farrell

97070_fm_hr_i-xxiv.indd 18 27/02/18 7:34 pm

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-202

xix

Using Your Own Computer

Read This Before You Begin
The following information will help you as you prepare to use this textbook.

To the User of the data Files
To complete the steps and projects in this book, you need data files that have been created
specifically for this book. Your instructor will provide the data files to you. You also can
obtain the files electronically from www.CengageBrain.com. Find the ISBN of your title
on the back cover of your book, then enter the ISBN in the search box at the top of the
 Cengage Brain home page. You can find the data files on the product page that opens. Note
that you can use a computer in your school lab or your own computer to complete the
exercises in this book.

Using Your own Computer
To use your own computer to complete the steps and exercises, you need the following:

 • Software: Java SE 9, available from www.oracle.com/technetwork/java/index.html.
Although almost all of the examples in this book will work with earlier versions of Java,
this book was created using Java 9e. You also need a text editor, such as Notepad. A few
exercises ask you to use a browser for research. Chapter 15 uses NetBeans to develop
JavaFX programs; you can downoad this software from Https:netbens.org.

 • Hardware: For operating system requirements (memory and disk space), see
http://java.com/en/download/help.

P R E FA C E

97070_fm_hr_i-xxiv.indd 19 27/02/18 7:34 pm

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-202

Features

58

 Using DataC h a p t e r 2

Declaring and Using a Variable

In this section, you write an application to work with a variable and a constant.

1. Open a new document in your text editor. Create a class header and an opening
and closing curly brace for a new class named DataDemo by typing the following:

public class DataDemo
{
}

2. Between the curly braces, indent a few spaces and type the following main()
method header and its curly braces:

public static void main(String[] args)
{
}

3. Between the main() method’s curly braces, type the following variable
declaration:

int aWholeNumber = 315;

4. Type the following output statements. The first uses the print() method to
display a string that includes a space before the closing quotation mark and
leaves the insertion point for the next output on the same line. The second
statement uses println() to display the value of aWholeNumber and then
advance to a new line.

System.out.print("The number is ");
System.out.println(aWholeNumber);

5. Save the file as DataDemo.java.

6. Up to this point in the book, every print() and println() statement you
have seen has used a String as an argument. When you added the last two
 statements to the DataDemo class, you wrote a println() statement that uses
an int as an argument. As a matter of fact, there are many different versions of
print() and println() that use different data types. Go to the Java website
(www.oracle.com/technetwork/java/index.html), select Java APIs, and
then select Java SE 9. Scroll through the list of All Classes, and select
 PrintStream; you will recall from Chapter 1 that PrintStream is the data type
for the out object used with the println() method. Scroll down to view the list
of methods in the Method Summary, and notice the many versions of the print()
and println() methods, including ones that accept a String, an int, a long,
and so on. In the last two statements you added to this program, one used a

You Do It

(continues)

97070_ch02_hr_049-109.indd 58 07/02/18 3:23 pm

88

 Using DataC h a p t e r 2

performing arithmetic Using Variables and Constants
Table 2-8 describes the five standard arithmetic operators that you use to perform calcula-
tions with values in your programs. A value used on either side of an operator is an operand.
For example, in the expression 45 + 2, the numbers 45 and 2 are operands. The arithmetic
operators are examples of binary operators, so named because they require two operands.

Confirm dialog boxes provide more practical uses when your applications can make decisions based on the
users’ responses. In the chapter “Making Decisions,” you will learn how to make decisions within programs.

The false statement is #3. A confirm dialog box displays the options Yes, No, and
Cancel.

tWO trUthS & a LIe

Using the JOptionPane Class to Accept GUI Input

1. You can create an input dialog box using the showInputDialog() method;
the method returns a String that represents a user’s response.

2. You can use methods from the Java classes Integer and Double when you
want to convert a dialog box’s returned values to numbers.

3. A confirm dialog box can be created using the showConfirmDialog()
method in the JOptionPane class; a confirm dialog box displays the options
Accept, Reject, and Escape.

Watch the video Getting Input.

You will learn about the Java shortcut arithmetic operators in the chapter “Looping.”

The operators / and % deserve special consideration. Java supports two types of division:

 • Floating-point division occurs when either or both of the operands are floating-point
values. For example, 45.0 / 2 is 22.5.

 • Integer division occurs when both of the operands are integers. The result is an inte-
ger, and any fractional part of the result is lost. For example, the result of 45 / 2 is 22. As
another example, 39 / 5 is 7 because 5 goes into 39 seven whole times; 38 / 5, 37 / 5, 36 / 5,
and 35 / 5 all evaluate to 7.

97070_ch02_hr_049-109.indd 88 07/02/18 3:24 pm

The author does an
awesome job: the examples,
problems, and material are
very easy to understand!
—Bernice Cunningham,
Wayne County Community
College district

VIdEo LEssoNs help explain
important chapter concepts�
Videos are part of the eBook in
MindTap and are also posted on
the Instructor Companion Site�

NoTEs provide
 additional information—
for example, another
location in the book that
expands on a topic, or a
common error to watch
out for�

YoU do IT sections
walk students through
program development
step by step�

This text focuses on helping students become better programmers and
understand Java program development through a variety of key features.
In addition to Chapter Objectives, Summaries, and Key Terms, these useful
features will help students regardless of their learning styles.xx

97070_fm_hr_i-xxiv.indd 20 27/02/18 7:34 pm

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-202

xxi

158

 Using Methods, Classes, and ObjectsC h a p t e r 3

Don’t Do It
 • Don’t place a semicolon at the end of a method header. After you get used to putting

semicolons at the end of every statement, it’s easy to start putting them in too many
places. Method headers never end in a semicolon.

 • Don’t think “default constructor” means only the automatically supplied constructor.
Any constructor that does not accept parameters is a default constructor.

 • Don’t think that a class’s methods must accept its own fields’ values as parameters or
return values to its own fields. When a class contains both fields and methods, each
method has direct access to every field within the class.

 • Don’t create a class method that has a parameter with the same identifier as a class
field—yet. If you do, you will only be allowed to access the local variable within the
method, and you will not be able to access the field. You will be able to use the same
identifier and still access both values after you read the next chapter. For now, make
sure that the parameter in any method has a different identifier from any field.

where it is assigned to the object used in the method call. Add a closing curly
brace for the method.

service.setServiceDescription(service);
service.setPrice(price);
return service;

}

8. Save the file, compile it, and execute it. The execution looks no different from the
original version in Figure 3-28 earlier in this chapter, but by creating a method
that accepts an unfilled SpaService object and returns one filled with data, you
have made the main() method shorter and reused the data entry code.

(continued)

method
invoke
call
calling method
called method

abstraction
method header
declaration
method body
implementation

stub
access modifier
return type
return a value
fully qualified identifier

Key terms

97070_ch03_hr_110-169.indd 158 07/02/18 3:16 pm

5

Comparing Procedural and Object-Oriented Programming Concepts

Comparing Procedural and Object-Oriented
Programming Concepts
Procedural programming and object-oriented programming describe two different
approaches to writing computer programs.

Procedural Programming
Procedural programming is a style of programming in which operations are executed one
after another in sequence.

The typical procedural program defines and uses named computer memory locations that
are called variables. Variables hold the data a program uses. For example, data might be
read from an input device and stored in a location the programmer has named rateOfPay.
The variable value might be used in an arithmetic statement, used as the basis for a
decision, sent to an output device, or have other operations performed with it. The data
stored in a variable can change, or vary, during a program’s execution.

For convenience, the individual operations used in a computer program are often grouped
into logical units called procedures. For example, a series of four or five comparisons and
calculations that together determine a person’s federal withholding tax value might be
grouped as a procedure named calculateFederalWithholding(). (As a convention, this
book will show parentheses following every procedure name.) As a procedural computer
executes its statements, it can sometimes pause to call a procedure. When a program

The false statement is #3. A language translator finds syntax errors, but logic
errors can still exist in a program that is free of syntax errors.

TWO TRUTHS & A LIE

Learning Programming Terminology

In each “Two Truths & a Lie” section, two of the numbered statements are true, and
one is false. Identify the false statement and explain why it is false.

1. Unlike a low-level programming language, a high-level programming language
allows you to use a vocabulary of reasonable terms instead of the sequences
of on-and-off switches that perform the corresponding tasks.

2. A syntax error occurs when you violate the rules of a language; locating and
repairing all syntax errors is part of the process of debugging a program.

3. Logic errors are fairly easy to find because the software that translates a
program finds all the logic errors for you.

97070_ch01_hr_001-048.indd 5 07/02/18 3:21 pm

77

Using the Scanner Class to Accept Keyboard Input

It is legal to write a single prompt that requests multiple input values—for example,
Please enter your age, area code, and zip code >>. The user could then enter the three
values separated with spaces, tabs, or Enter key presses. The values would be interpreted
as separate tokens and could be retrieved with three separate nextInt() method calls.
 However, asking a user to enter multiple values is more likely to lead to mistakes. For
 example, if a program asks a user to enter a name, address, and birthdate all at once, the
user is likely to forget one of the values or to enter them in the wrong order. This book will
follow the practice of using a separate prompt for each input value required.

Pitfall: Using nextLine() Following One of the Other Scanner
Input Methods
You can encounter a problem when you use one of the numeric Scanner class retrieval
methods or the next() method before you use the nextLine() method. Consider the pro-
gram in Figure 2-19. It is identical to the one in Figure 2-17, except that the user is asked for
an age before being asked for a name. Figure 2-20 shows a typical execution.

Figure 2-19 The GetUserInfo2 class

import java.util.Scanner;
public class GetUserInfo2
{
 public static void main(String[] args)
 {
 String name;
 int age;
 Scanner inputDevice = new Scanner(System.in);
 System.out.print("Please enter your age >> ");
 age = inputDevice.nextInt();
 System.out.print("Please enter your name >> ");
 name = inputDevice.nextLine();
 System.out.println("Your name is " + name +
 " and you are " + age + " years old.");
 }
}

If you accept numeric input
prior to string input, the
string input is ignored
unless you take special
action.

Don’t Do It

Figure 2-20 Typical execution of the GetUserInfo2 program

97070_ch02_hr_049-109.indd 77 07/02/18 3:05 pm

TWo TRUTHs & A LIE quizzes appear
after each chapter section, with answers
provided� The quiz contains three state-
ments based on the preceding section of
text—two statements are true and one is
false� Answers give immediate feedback
without “giving away” answers to the
multiple-choice questions and programming
problems later in the chapter� Students also
have the option to take these quizzes in
MindTap�

doN’T do IT sections at the end of
each chapter list advice for avoiding
common programming errors�

THE doN’T do IT ICoN illustrates
how NOT to do something—for
example, having a dead code path
in a program� This icon provides a
visual jolt to the student, emphasizing
that particular figures are NOT to be
emulated and making students more
careful to recognize problems in
 existing code�

F E AT U R E sF E AT U R E s

97070_fm_hr_i-xxiv.indd 21 27/02/18 7:34 pm

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-202

xxii

Assessment

160

 Using Methods, Classes, and ObjectsC h a p t e r 3

 • A constructor establishes an object and provides specific initial values for the object’s
data fields. A constructor always has the same name as the class of which it is a member.
By default, numeric fields are set to 0 (zero), character fields are set to Unicode
‘\u0000’, Boolean fields are set to false, and object type fields are set to null.

 • A class is an abstract, programmer-defined data type, similar to Java’s built-in, primitive
data types.

Review Questions

1. In Java, methods must include all of the following except _____________.

a. a call to another method
b. a declaration

c. curly braces
d. a body

2. All method declarations contain _____________.

a. arguments
b. one or more explicitly named access specifiers
c. parentheses
d. the keyword static

3. A public static method named computeSum() is located in ClassA. To call the
method from within ClassB, use the statement _____________.

a. ClassA.computeSum();

b. ClassB(computeSum());

c. ComputeSum(ClassA);

d. You cannot call computeSum() from within ClassB.

4. Which of the following method declarations is correct for a static method
named displayFacts() if the method receives an int argument?

a. public static int displayFacts()

b. public void displayFacts(int data)

c. public static void displayFacts(int data)

d. Two of these are correct.

5. The method with the declaration public static int aMethod(double d) is a
method type of _____________.

a. static

b. int

c. double

d. You cannot determine the method type.

97070_ch03_hr_110-169.indd 160 07/02/18 3:25 pm

163

Exercises

Exercises

Programming Exercises

1. Suppose that you have created a program with only the following variables.

int x = 2;
int y = 3;

Suppose that you also have a method with the following header:

public static void mathMethod(int x)

Which of the following method calls are legal?

a. mathMethod(x);

b. mathMethod(y);

c. mathMethod(x, y);

d. mathMethod(x + y);

e. mathMethod(12L);

f. mathMethod(12);

g. mathMethod(12.2);

h. mathMethod();

i. mathMethod(a);

j. mathMethod(a / x);

2. Suppose that you have created a program with only the following variables.

int age = 34;
int weight = 180;
double height = 5.9;

Suppose that you also have a method with the following header:

public static void calculate(int age, double size)

Which of the following method calls are legal?

a. calculate(age, weight);

b. calculate(age, height);

c. calculate(weight, height);

d. calculate(height, age);

e. calculate(45.5, 120);

f. calculate(12, 120.2);

g. calculate(age, size);

h. calculate(2, 3);

i. calculate(age);

j. calculate(weight, weight);

3. Suppose that a class named Bicycle contains a private nonstatic integer named
height, a public nonstatic String named model, and a public static integer named
wheels. Which of the following are legal statements in a class named BicycleDemo
that has instantiated an object as Bicycle myBike = new Bicycle();?

a. myBike.height = 26;

b. myBike.model = "Cyclone";

c. myBike.wheels = 3;

d. myBike.model = 108;

e. Bicycle.height = 24;

f. Bicycle.model = "Hurricane";

g. Bicycle.int = 3;

h. Bicycle.model = 108;

i. Bicycle.wheels = 2;

j. Bicycle yourBike = myBike;

97070_ch03_hr_110-169.indd 163 07/02/18 3:25 pm

I found the author’s explanation of difficult topics
to be very clear and thorough.

—Leslie spivey,
Edison Community College

PRoGRAMMING ExERCIsEs
provide opportunities to practice
concepts� These exercises
increase in difficulty and allow
students to explore each major
programming concept presented
in the chapter� Additional coding
labs and snippets are available
in the MindTap�

REVIEW QUEsTIoNs
test student
comprehension of
the major ideas and
techniques presented�
Twenty questions
follow each chapter�

97070_fm_hr_i-xxiv.indd 22 27/02/18 7:34 pm

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-202

xxiii

48

 Creating Java ProgramsC h a p t e r 1

Appendix D contains information about generating random numbers. To fully
understand the process, you must learn more about Java classes and methods.
For now, however, you can copy the following statement to generate and use a
dialog box that displays a random number between 1 and 10:
JOptionPane.showMessageDialog(null,"The number is "+
 (1 + (int)(Math.random() * 10)));

Write a Java application that displays two dialog boxes in sequence. The first asks
you to think of a number between 1 and 10. The second displays a randomly
generated number; the user can see whether his or her guess was accurate.
(In future chapters, you will improve this game so that the user can enter a
guess and the program can determine whether the user was correct. If you
wish, you also can tell the user how far off the guess was, whether the guess was
high or low, and provide a specific number of repeat attempts.) Save the file as
RandomGuess.java.

Case Problems

The case problems in this section introduce two fictional businesses. Throughout this
book, you will create increasingly complex classes for these businesses that use the newest
concepts you have mastered in each chapter.

1. Carly’s Catering provides meals for parties and special events. Write a program
that displays Carly’s motto, which is “Carly’s makes the food that makes it a
party.” Save the file as CarlysMotto.java. Create a second program that displays
the motto surrounded by a border composed of asterisks. Save the file as
CarlysMotto2.java.

2. Sammy’s Seashore Supplies rents beach equipment such as kayaks, canoes, beach
chairs, and umbrellas to tourists. Write a program that displays Sammy’s motto,
which is “Sammy’s makes it fun in the sun.” Save the file as SammysMotto.java.
Create a second program that displays the motto surrounded by a border
 composed of repeated Ss. Save the file as SammysMotto2.java.

97070_ch01_hr_001-048.indd 48 07/02/18 3:23 pm

47

Exercises

Debugging Exercises

1. Each of the following files in the Chapter01 folder in your downloadable
student files has syntax and/or logic errors. In each case, determine the
problem and fix the errors. After you correct the errors, save each file using
the same filename preceded with Fix. For example, DebugOne1.java will
become FixDebugOne1.java.

a. DebugOne1.java
b. DebugOne2.java

c. DebugOne3.java
d. DebugOne4.java

When you change a filename, remember to change every instance of the class name within the file so
that it matches the new filename. In Java, the filename and class name must always match.

Game Zone

1. In 1952, A. S. Douglas wrote his University of Cambridge Ph.D. dissertation on
human-computer interaction, and created the first graphical computer game—a
version of Tic-Tac-Toe. The game was programmed on an EDSAC vacuum-tube
mainframe computer. The first computer game is generally assumed to be
“Spacewar!”, developed in 1962 at MIT; the first commercially available video
game was “Pong,” introduced by Atari in 1973. In 1980, Atari’s “Asteroids”
and “Lunar Lander” became the first video games to be registered in the U.S.
Copyright Office. Throughout the 1980s, players spent hours with games that
now seem very simple and unglamorous; do you recall playing “Adventure,”
 “Oregon Trail,” “Where in the World Is Carmen Sandiego?,” or “Myst”?

Today, commercial computer games are much more complex; they require
many programmers, graphic artists, and testers to develop them, and large
management and marketing staffs are needed to promote them. A game might
cost many millions of dollars to develop and market, but a successful game might
earn hundreds of millions of dollars. Obviously, with the brief introduction
to programming you have had in this chapter, you cannot create a very
 sophisticated game. However, you can get started.

For games to hold your interest, they almost always include some random,
 unpredictable behavior. For example, a game in which you shoot asteroids loses
some of its fun if the asteroids follow the same, predictable path each time you
play the game. Therefore, generating random values is a key component in
 creating most interesting computer games.

97070_ch01_hr_001-048.indd 47 07/02/18 3:22 pm

GAME ZoNE ExERCIsEs
are included at the end of
each chapter� Students
can create games as an
additional entertaining way to
understand key programming
concepts�

dEBUGGING ExERCIsEs
are included with each chapter
because examining programs
critically and closely is a crucial
programming skill� Students
can download these exercises
at www.Cengagebrain.com�
These files are also available
to instructors through
sso.cengage.com�

CAsE PRoBLEMs provide
opportunities to build more
detailed programs that
continue to incorporate
increasing functionality
throughout the book�

A s s E s s M E N T

97070_fm_hr_i-xxiv.indd 23 27/02/18 7:34 pm

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-202

97070_fm_hr_i-xxiv.indd 24 27/02/18 7:34 pm

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-202

C H A P T E R 1
Creating Java
Programs

Upon completion of this chapter, you will be able to:

Define basic programming terminology

Compare procedural and object-oriented programming

Describe the features of the Java programming language

Analyze a Java application that produces console output

Compile a Java class and correct syntax errors

Run a Java application and correct logic errors

Add comments to a Java class

Create a Java application that produces GUI output

Find help

97070_ch01_hr_001-048.indd 1 24/02/18 3:27 pm

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-202

2

 Creating Java ProgramsC H A P T E R 1

Learning Programming Terminology
A computer program is a set of instructions that you write to tell a computer what to do.
Computer equipment, such as a monitor or keyboard, is hardware, and programs are
software. A program that performs a task for a user (such as calculating and producing
paychecks, word processing, or playing a game) is application software; a program that
manages the computer itself (such as Windows or Linux) is system software. The logic
behind any computer program, whether it is an application or system program, determines
the exact order of instructions needed to produce desired results. Much of this book
describes how to develop the logic to create programs that are application software, called
applications (or, especially if used on a mobile device, apps) for short.

You can write computer programs in a high-level programming language such as
Java, Visual Basic, C++, or C#. A high-level programming language allows you to use
 English-like, easy-to-remember terms such as read, write, and add. These languages are
called high-level languages to distinguish them from low-level languages that correspond
closely to a computer’s circuitry and are not as easily read or understood. Because they
 correspond to circuitry, low-level languages must be customized for every type of machine
on which a program runs.

All computer programs ultimately are converted to the lowest level language, which
is machine language. Machine language, or machine code, is the most basic set of
instructions that a computer can execute. Each type of processor (the internal hardware
that handles computer instructions) has its own set of machine language instructions.
Programmers often describe machine language using 1s and 0s to represent the on-and-off
circuitry of computer systems.

The system that uses only 1s and 0s is the binary numbering system. Appendix B describes the binary
system in detail. Later in this chapter, you will learn that bytecode is the name for the binary code
created when Java programs are converted to machine language.

Every programming language has its own syntax, or rules about how language elements are
combined correctly to produce usable statements. For example, depending on the specific
high-level language, you might use the verb print or write to produce output. All languages
have a specific, limited vocabulary (the language’s keywords) and a specific set of rules for
using that vocabulary. When you are learning a computer programming language, such as
Java, C++, or Visual Basic, you are learning the vocabulary and syntax for that language.

Using a programming language, programmers write a series of program statements, which
are similar to English sentences. The statements carry out the program’s tasks. Program
statements are also known as commands because they are orders to the computer, such as
Output this word or Add these two numbers.

After the program statements are written in a high-level programming language, a
computer program called a compiler or interpreter translates the statements into machine
language. A compiler translates an entire program before carrying out any statements,
or executing them, whereas an interpreter translates one program statement at a time,
executing a statement as soon as it is translated.

97070_ch01_hr_001-048.indd 2 24/02/18 3:27 pm

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-202

3

Learning Programming Terminology

Compilers and interpreters issue one or more error messages each time they encounter
an invalid program statement—that is, a statement containing a syntax error, or misuse
of the language. Examples of syntax errors include misspelling a keyword or omitting a
word that a statement requires. When a syntax error is detected, the programmer can
correct the error and attempt another translation. Repairing all syntax errors is the first
part of the process of debugging a program—freeing the program of all flaws or errors,
also known as bugs. Figure 1-1 illustrates the steps a programmer takes while developing
an executable program. You will learn more about debugging Java programs later in this
chapter.

As Figure 1-1 shows, you might write a program that compiles successfully (that is, it
contains no syntax errors), but it still might not be a correct program because it might
contain one or more logic errors. A logic error is a bug that allows a program to run, but
that causes it to operate incorrectly. Correct logic requires that all the right commands be
issued in the appropriate order. Examples of logic errors include multiplying two values
when you meant to divide them or producing output prior to obtaining the appropriate
input. When you develop a program of any significant size, you should plan its logic before
you write any program statements.

Correcting logic errors is much more difficult than correcting syntax errors. Syntax errors
are discovered by the language translator when you compile a program, but a program can
be free of syntax errors and execute while still retaining logic errors. Sometimes you can
find logic errors by carefully examining the structure of your program (when a group of
programmers do this together, it is called a structured walkthrough), but sometimes you
can identify logic errors only when you examine a program’s output. For example, if you
know an employee’s paycheck should contain the value $4,000, but when you examine a
payroll program’s output you see that it holds $40, then a logic error has occurred. Perhaps
an incorrect calculation was performed, or maybe the hours worked value was output
by mistake instead of the net pay value. When output is incorrect, the programmer must
carefully examine all the statements within the program, revise or move the offending
statements, and translate and test the program again.

Whether you use a compiler or interpreter often depends on the programming language you use.
For example, C++ is a compiled language, and Visual Basic is an interpreted language. Each type of
translator has its supporters; programs written in compiled languages execute more quickly, whereas
programs written in interpreted languages can be easier to develop and debug. Java uses the best of
both technologies: a compiler to translate your programming statements and an interpreter to read the
compiled code line by line when the program executes (also called at run time).

Programmers call some logic errors semantic errors. For example, if you misspell a programming
 language word, you commit a syntax error, but if you use a correct word in the wrong context, you
commit a semantic error.

Just because a program produces correct output does not mean it is free from logic errors. For
example, suppose that a program should multiply two values entered by the user, that the user
enters two 2s, and the output is 4. The program might actually be adding the values by mistake.
The programmer would discover the logic error only by entering different values, such as 5 and 7,
and examining the result.

97070_ch01_hr_001-048.indd 3 24/02/18 3:27 pm

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-202

4

 Creating Java ProgramsC H A P T E R 1

Figure 1-1 The program development process

De
bu

gg
in

g
pr

oc
es

s

De
bu

gg
in

g
pr

oc
es

s

Yes

Yes

No

No

Use translating software (a compiler or
interpreter) that translates programming
language statements to machine language

Examine list of
syntax errors

Write program language statements
that correspond to the logic

Examine
program output

Are there runtime
or output errors?

Can all statements
be successfully
translated?

Plan program logic

Execute the program

97070_ch01_hr_001-048.indd 4 24/02/18 3:27 pm

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-202

5

Comparing Procedural and Object-Oriented Programming Concepts

Comparing Procedural and Object-Oriented
Programming Concepts
Procedural programming and object-oriented programming describe two different
approaches to writing computer programs.

Procedural Programming
Procedural programming is a style of programming in which operations are executed one
after another in sequence.

The typical procedural program defines and uses named computer memory locations that
are called variables. Variables hold the data a program uses. For example, data might be
read from an input device and stored in a location the programmer has named rateOfPay.
The variable value might be used in an arithmetic statement, used as the basis for a
decision, sent to an output device, or have other operations performed with it. The data
stored in a variable can change, or vary, during a program’s execution.

For convenience, the individual operations used in a computer program are often grouped
into logical units called procedures. For example, a series of four or five comparisons and
calculations that together determine a person’s federal withholding tax value might be
grouped as a procedure named calculateFederalWithholding(). (As a convention, this
book will show parentheses following every procedure name.) As a procedural computer
executes its statements, it can sometimes pause to call a procedure. When a program

The false statement is #3. A language translator finds syntax errors, but logic
errors can still exist in a program that is free of syntax errors.

TWO TRUTHS & A LIE

Learning Programming Terminology

In each “Two Truths & a Lie” section, two of the numbered statements are true, and
one is false. Identify the false statement and explain why it is false.

1. Unlike a low-level programming language, a high-level programming language
allows you to use a vocabulary of reasonable terms instead of the sequences
of on-and-off switches that perform the corresponding tasks.

2. A syntax error occurs when you violate the rules of a language; locating and
repairing all syntax errors is part of the process of debugging a program.

3. Logic errors are fairly easy to find because the software that translates a
program finds all the logic errors for you.

97070_ch01_hr_001-048.indd 5 24/02/18 3:27 pm

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-202

6

 Creating Java ProgramsC H A P T E R 1

calls a procedure, the current logic is temporarily suspended so that the procedure’s
commands can execute. A single procedural program might contain any number of
 procedure calls. Procedures are also called modules, methods, functions, and subroutines.
Users of different programming languages tend to use different terms. As you will learn
later in this chapter, Java programmers most frequently use the term method.

Object-Oriented Programming
Object-oriented programming is an extension of procedural programming in which you
take a slightly different approach to writing computer programs. Writing object-oriented
programs involves:

 • Creating classes, which are blueprints for objects

 • Creating objects, which are specific instances of those classes

 • Creating applications that manipulate or use those objects

Programmers use OO as an abbreviation for object-oriented; it is pronounced “oh oh.” Object-oriented
programming is abbreviated OOP, and pronounced to rhyme with soup.

Originally, object-oriented programming was used most frequently for two major types of
applications:

 • Computer simulations, which attempt to mimic real-world activities so that their
processes can be improved or so that users can better understand how the real-world
processes operate

 • Graphical user interfaces, or GUIs (pronounced gooeys), which allow users to interact
with a program in a graphical environment

Thinking about objects in these two types of applications makes sense. For example, a city
might want to develop a program that simulates traffic patterns and controls traffic signals
to help prevent tie-ups. Programmers would create classes for objects such as cars and
pedestrians that contain their own data and rules for behavior. For example, each car has a
speed and a method for changing that speed. The specific instances of cars could be set in
motion to create a simulation of a real city at rush hour.

Creating a GUI environment for users is also a natural use for object orientation. It is easy
to think of the components a user manipulates on a computer screen, such as buttons
and scroll bars, as similar to real-world objects. Each GUI object contains data—for
example, a button on a screen has a specific size and color. Each object also contains
behaviors—for example, each button can be clicked and reacts in a specific way when
clicked. Some people consider the term object-oriented programming to be synonymous
with GUI programming, but object-oriented programming means more. Although many
GUI programs are object oriented, not all object-oriented programs use GUI objects.
Modern businesses use object-oriented design techniques when developing all sorts of

97070_ch01_hr_001-048.indd 6 24/02/18 3:27 pm

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-202

7

Comparing Procedural and Object-Oriented Programming Concepts

business applications, whether they are GUI applications or not. In the first 13 chapters of
this book, you will learn object-oriented techniques that are appropriate for any program
type; in the last chapters, you will apply what you have learned about those techniques
specifically to GUI applications.

Understanding object-oriented programming requires grasping three basic concepts:

 • Encapsulation as it applies to classes as objects

 • Inheritance

 • Polymorphism

Understanding Classes, Objects, and Encapsulation
In object-oriented terminology, a class is a group or collection of objects with common
properties. In the same way that a blueprint exists before any houses are built from it, and
a recipe exists before any cookies are baked from it, a class definition exists before any
objects are created from it. A class definition describes what attributes its objects will have
and what those objects will be able to do. Attributes are the characteristics that define an
object; they are properties of the object. When you learn a programming language such as
Java, you learn to work with two types of classes: those that have already been developed by
the language’s creators and your own new, customized classes.

An object is a specific, concrete instance of a class. Creating an instance is called
instantiation. You can create objects from classes that you write and from classes written
by other programmers, including Java’s creators. The values contained in an object’s
properties often differentiate instances of the same class from one another. For example,
the class Automobile describes what Automobile objects are like. Some properties of the
Automobile class are make, model, year, and color. Each Automobile object possesses the
same attributes, but not necessarily the same values for those attributes. One Automobile
might be a 2014 white Ford Taurus and another might be a 2018 red Chevrolet Camaro.
Similarly, your dog has the properties of all Dogs, including a breed, name, age, and
whether the dog’s shots are current. The values of the properties of an object are referred
to as the object’s state. In other words, you can think of objects as roughly equivalent to
nouns (words that describe a person, place, or thing), and of their attributes as similar to
adjectives that describe the nouns.

When you understand an object’s class, you understand the characteristics of the object.
If your friend purchases an Automobile, you know it has a model name, and if your
friend gets a Dog, you know the dog has a breed. Knowing what attributes exist for classes
allows you to ask appropriate questions about the states or values of those attributes. For
example, you might ask how many miles the car gets per gallon, but you would not ask
whether the car has had shots. Similarly, in a GUI operating environment, you expect each
component to have specific, consistent attributes and methods, such as a window having a
title bar and a close button, because each component gains these properties as a member
of the general class of GUI components. Figure 1-2 shows the relationship of some Dog
objects to the Dog class.

97070_ch01_hr_001-048.indd 7 24/02/18 3:27 pm

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-202

8

 Creating Java ProgramsC H A P T E R 1

Besides defining properties, classes define methods their objects can use. A method is a
self-contained block of program code that carries out some action, similar to a procedure
in a procedural program. An Automobile, for example, might have methods for moving
forward, moving backward, and determining the status of its gas tank. Similarly, a Dog
might have methods for walking, eating, and determining its name, and a program’s
GUI components might have methods for maximizing and minimizing them as well as
determining their size. In other words, if objects are similar to nouns, then methods are
similar to verbs.

In object-oriented classes, attributes and methods are encapsulated into objects.
Encapsulation refers to two closely related object-oriented notions:

 • Encapsulation is the enclosure of data and methods within an object. Encapsulation
allows you to treat all of an object’s methods and data as a single entity. Just as an actual
dog contains all of its attributes and abilities, so would a program’s Dog object.

 • Encapsulation also refers to the concealment of an object’s data and methods from
outside sources. Concealing data is sometimes called information hiding, and concealing
how methods work is implementation hiding; you will learn more about both terms in
the chapter “Using Methods, Classes, and Objects.” Encapsulation lets you hide specific
object attributes and methods from outside sources and provides the security that keeps
data and methods safe from inadvertent changes.

By convention, programmers using Java begin their class names with an uppercase letter. Thus,
the class that defines the attributes and methods of an automobile probably would be named
Automobile, and the class for dogs probably would be named Dog. This convention, however, is
not required to produce a workable program.

Figure 1-2 Dog class definition and some objects created from it

Dog class definition Dog class instances (objects)

Every Dog that is
created will have a:

Ginger
6
Akita
Up to date

Bowser
2
Retriever
Up to date

Roxy
1
Beagle
Up to date

Name

Age

Breed

Shot status

is
to

ck
.c

om
/G

lo
ba

lP

is
to

ck
.c

om
/G

lo
ba

lP

is
to

ck
.c

om
/o

la
se

r

97070_ch01_hr_001-048.indd 8 24/02/18 3:27 pm

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-202

9

Comparing Procedural and Object-Oriented Programming Concepts

If an object’s methods are well written, the user can be unaware of the low-level details
of how the methods are executed, and the user must simply understand the interface
or interaction between the method and the object. For example, if you can fill your
Automobile with gasoline, it is because you understand the interface between the gas pump
nozzle and the vehicle’s gas tank opening. You don’t need to understand how the pump
works mechanically or where the gas tank is located inside your vehicle. If you can read
your speedometer, it does not matter how the displayed figure is calculated. As a matter of
fact, if someone produces a superior, more accurate speed-determining device and inserts
it in your Automobile, you don’t have to know or care how it operates, as long as your
interface remains the same. The same principles apply to well-constructed classes used in
object-oriented programs—programs that use classes only need to work with interfaces.

Understanding Inheritance and Polymorphism
An important feature of object-oriented program design that differentiates it from procedural
program design is inheritance—the ability to create classes that share the attributes and
methods of existing classes, but with more specific features. For example, Automobile is a
class, and all Automobile objects share many traits and abilities. Convertible is a class that
inherits from the Automobile class; a Convertible is a type of Automobile that has and can
do everything a “plain” Automobile does—but with an added ability to lower its top. (In turn,
Automobile inherits from the Vehicle class.) Convertible is not an object—it is a class.
A specific Convertible is an object—for example, my1967BlueMustangConvertible.

Inheritance helps you understand real-world objects. For example, the first time you
encounter a convertible, you already understand how the ignition, brakes, door locks,
and other systems work because you realize that a convertible is a type of automobile.
Therefore, you need to be concerned only with the attributes and methods that are “new”
with a convertible. The advantages in programming are the same—you can build new
classes based on existing classes and concentrate on the specialized features you are adding.

A final important concept in object-oriented terminology (that does not exist in procedural
programming terminology) is polymorphism. Literally, polymorphism means many
forms—it describes the feature of languages that allows the same word or symbol to be
interpreted correctly in different situations based on the context. For example, although
the classes Automobile, Sailboat, and Airplane all inherit from Vehicle, methods
such as turn and stop work differently for instances of those classes. The advantages of
polymorphism will become more apparent when you begin to create GUI applications
containing features such as windows, buttons, and menu bars. In a GUI application, it is
convenient to remember one method name, such as setColor or setHeight, and have it
work correctly no matter what type of object you are modifying.

When you see a plus sign (+) between two numbers, you understand they are being added. When you see
it carved in a tree between two names, you understand that the names are linked romantically. Because
the symbol has diverse meanings based on context, it is polymorphic. Chapters 10 and 11 provide more
information about inheritance and polymorphism and how they are implemented in Java. Using Java, you
can write either procedural or object-oriented programs. In this book, you will learn about how to do both.

97070_ch01_hr_001-048.indd 9 24/02/18 3:27 pm

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-202

