, / Joyce Farrell

F | 4

Ninth Edition

JAVA™ PROGRAMMING

JOYCE FARRELL

- 2 CENGAGE

Australia * Brazil « Mexico * Singapore « United Kingdom « United States

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-202

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

This is an electronic version of the print textbook. Due to electronic rights restrictions,
some third party content may be suppressed. Editorial review has deemed that any suppressed
content does not materially affect the overall learning experience. The publisher reserves the right
to remove content from this title at any time if subsequent rights restrictions require it. For
valuable information on pricing, previous editions, changes to current editions, and alternate
formats, please visit www.cengage.com/highered to search by ISBN#, author, title, or keyword for
materials in your areas of interest.

Important Notice: Media content referenced within the product description or the product
text may not be available in the eBook version.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

/. » CENGAGE

Java™ Programming, Ninth Edition
Joyce Farrell

SVP, GM Skills: Jonathan Lau
Product Team Manager: Kristin McNary

Associate Product Manager:
Kate Mason

Executive Director of Content Design,
Skills: Marah Bellegarde

Director, Learning Design -
Skills Computing: Leigh Hefferon

Learning Designer:
Natalie Onderdonk

Product Assistant: Jake Toth
Marketing Director: Michele McTighe
Marketing Manager: Stephanie Albracht

Content Project Manager:
Michele Stulga

Senior Designer: Diana Graham

Production Service/Composition:
SPi Global

Cover image: Colormos/Photodisc
/Getty Images

Notice to the Reader

© 2019, 2016, 2014, 2012 Cengage Learning, Inc.
Unless otherwise noted, all content is © Cengage.

ALL RIGHTS RESERVED. No part of this work covered by the copyright
herein may be reproduced or distributed in any form or by any
means, except as permitted by U.S. copyright law, without the prior
written permission of the copyright owner.

Unless otherwise noted all screenshots are courtesy of Microsoft
Corporation.

Unless otherwise noted all tables/figures exhibits are © 2019 Cengage®.

For product information and technology assistance, contact us at
Cengage Customer & Sales Support, 1-800-354-9706
or support.cengage.com.

For permission to use material from this text or product, submit
all requests online at www.cengage.com/permissions.

Library of Congress Control Number: 2018933919

Softbound ISBN: 978-1-337-39707-0
Loose Leaf ISBN: 978-1-337-68590-0

Cengage

20 Channel Center Street
Boston, MA 02210

USA

Cengage is a leading provider of customized learning solutions with
employees residing in nearly 40 different countries and sales in more
than 125 countries around the world. Find your local representative at
www.cengage.com.

Cengage products are represented in Canada by Nelson Education, Ltd.

To learn more about Cengage platforms and services, visit
www.cengage.com.

To register or access your online learning solution or purchase
materials for your course, visit www.cengagebrain.com.

Publisher does not warrant or guarantee any of the products described herein or perform any independent analysis in
connection with any of the product information contained herein. Publisher does not assume, and expressly disclaims,
any obligation to obtain and include information other than that provided to it by the manufacturer. The reader is

expressly warned to consider and adopt all safety precautions that might be indicated by the activities described herein
and to avoid all potential hazards. By following the instructions contained herein, the reader willingly assumes all risks in
connection with such instructions. The publisher makes no representations or warranties of any kind, including but not
limited to, the warranties of fitness for particular purpose or merchantability, nor are any such representations implied
with respect to the material set forth herein, and the publisher takes no responsibility with respect to such material. The
publisher shall not be liable for any special, consequential, or exemplary damages resulting, in whole or part, from the
readers’ use of, or reliance upon, this material.

Printed in the United States of America
Print Number: 01 Print Year: 2018

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-202

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Brief Contents

Preface Xiv
Creating Java Programs 1
Using Data49
Using Methods, Classes and Objects .. . 110
More Object Concepts 170
Making Decisions 230
Looping ce e 283
Characters, Strings, and the

StringBuilder. 330
Arrays369
Advanced Array Concepts 416
Introduction to Inheritance 467
Advanced Inheritance Concepts 513
Exception Handling 570
File Input and Qutput. 635
Introduction to Swing Components 698
Using JavaFX and Scene Builder. 758
Working with the Java Platform 799
Data Representation. 804
Formatting Output. 810
Generating Random Numbers 820
Javadoc826
Glossary834

Index853

Copyright 2019 Cengage Learning. All Rights Rest

ent may be suppressed from the eBook ai d/rcChapl 1(s).
Editorial review has deemedlh& any suppressed conte: ld nof equen s require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-202

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Table of Contents

Preface Xiv

Creating Java Programs 1

Learning Programming Terminology. 2
Comparing Procedural and Object-Oriented
Programming Concepts. 5
Procedural Programming. 5
Object-Oriented Programming 6
Understanding Classes, Objects, and Encapsulation7
Understanding Inheritance and Polymorphism 9
Features of the Java Programming Language 10
Analyzing a Java Application that Produces
Console Qutput 12
Understanding the Statement that Produces
the Qutput. 13
Understanding the First Class 15
Understanding the main() Method 17
Indent Style.o 19
SavingalJavaClass 20
Compiling a Java Class and Correcting Syntax Errors. . . . 22
CompilingalJavaClass 22
Correcting Syntax Errors. 23
Running a Java Application and Correcting Logic Errors. . . 29
Running a Java Application. 29
Modifying a Compiled JavaClass 29
Correcting Logic Errors 31
Adding CommentstoalJavaClass 32
Creating a Java Application that Produces GUI Output. . . . 35
FindingHelp, 38
Don'tDolto 39
Key Terms 41
Chapter Summary 41
Exercises.o 45

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Using Data.49

Declaring and Using Constants and Variables 50

Declaring Variables 51

Declaring Named Constants 52

. The Scope of Variables and Constants 54

. v Concatenating Strings to Variables and Constants 54
Pitfall: Forgetting that a Variable Holds One Value

ataTime 57

Learning About Integer Data Types 60

Using the boolean DataType 65

Learning About Floating-Point Data Types 67

Using the charDataType 68

Using the Scanner Class to Accept Keyboard Input 74
Pitfall: Using nextLine() Following One of

the Other Scanner Input Methods. 77
Using the JOptionPane Class to Accept GUIl Input. 82
Using Input Dialog Boxes. 83
Using Confirm Dialog Boxes 86
Performing Arithmetic Using Variables and Constants. . . . 88
Associativity and Precedence. 89
Writing Arithmetic Statements Efficiently 91
Pitfall: Not Understanding Imprecision in
Floating-Point Numbers 91
Understanding Type Conversion. 96
Automatic Type Conversion. 96
Explicit Type Conversions 97
DontDolt 101
Key Terms 102
Chapter Summary 102
Exercises.o 105
Using Methods, Classes, and Objects . . . 110
Understanding Method Calls and Placement 111
Understanding Method Construction. 114
Access Specifiers.o oL 115
Return Type. 116
Method Name. 116
Parentheseso 117
Adding Parameters to Methods 121

Creating a Method that Receives a Single Parameter . . .122
Creating a Method that Requires Multiple Parameters. . .125
Creating Methods that Return Values 127
Chaining Method Calls 129

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-202

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Learning About Classes and Objects 133

CreatingaClass 136
Creating Instance MethodsinaClass 138
Organizing Classes« 141
Declaring Objects and Using Their Methods 145
Understanding Data Hiding 147 vii
An Introduction to Using Constructors. 150
Understanding that Classes Are Data Types 154
Don'tDolt 158
Key Terms 158
Chapter Summary 159
EXercises. 163
More Object Concepts. 170
Understanding Blocks and Scope 171
Overloading a Method 179
Automatic Type Promotion in Method Calls. 181
Learning About Ambiguity 185
Creating and Calling Constructors with Parameters. 187
Overloading Constructors 188
Learning About the this Reference. 192
Using the this Reference to Make Overloaded
Constructors More Efficient. 195
Using staticFields 199
Using Constant Fields 201
Using Automatically Imported, Prewritten
Constants and Methods. 206
TheMath Class. 206
Importing Classes that Are Not Imported Automatically . .208
Using the LocalDate Class 210
Understanding Composition and Nested Classes 216
Compositiono 216
Nested Classes 218
Don'tDolt 220
Key Terms 220
Chapter Summary 220
Exercises.o 224
Making Decisions 230
Planning Decision-Making Logic. 231
The if and if..else Statements. 233
The if Statement. 233

Pitfall: Misplacing a Semicolon in an if Statement. . . .234

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-202

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Pitfall: Using the Assignment Operator Instead

of the Equivalency Operator. 235
Pitfall: Attempting to Compare Objects Using
the Relational Operators 236
The if..else Statement. 236
. viii Using Multiple Statements in if and if..eTse Clauses . . .239
Nesting if and if..else Statements. 245
Using Logical AND and OR Operators 247
The AND Operator. 247
The OR Operator 249
Short-Circuit Evaluation 250
Making Accurate and Efficient Decisions. 253
Making Accurate Range Checks. 253
Making Efficient Range Checks 256
Using && and || Appropriately 256
Using the switch Statement. 258
Using the Conditional and NOT Operators 264
Using the NOT Operator 265
Understanding Operator Precedence 266
Adding Decisions and Constructors to Instance
Methods.o 269
DontDolt 272
Key Terms 273
Chapter Summary 273
Exercises. 277

Looping283

Learning About the Loop Structure 284
Creating while Loops. 285
Writing a Definite while Loop 285
Pitfall: Failing to Alter the Loop Control Variable
Within the Loop Body. 287
Pitfall: Unintentionally Creating a Loop with
anEmptyBody. oo 288
Altering a Definite Loop’s Control Variable 289
Writing an Indefinite while Loop 290
ValidatingData 292
Using Shortcut Arithmetic Operators 296
Creating a for Loop. 300
Unconventional for Loops. 302
Learning How and When to Use a do..while Loop 306
Learning About Nested Loops 308
Improving Loop Performance. 313

Avoidin Unnecessary Operat|ons 314

Copyright 2019 Cengage Learning. All Rights g@suvm May not be Copied, scanned, or duplicated, in whole or in part. WCN 02-200-202

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Considering the Order of Evaluation of

Short-Circuit Operators 314
ComparingtoZero 315
Employing Loop Fusion 316
A Final Note on Improving Loop Performance 317
Don'tDolt 320 ix .
Key Terms 320
Chapter Summary 320
Exercises.o 324

Characters, Strings, and the
StringBuilder330

Understanding String Data Problems 331
Using Character Class Methods. 332
Declaring and Comparing String Objects. 336
Comparing String Values. 336
Empty and nul11 Strings. 340
Using a Variety of String Methods. 342
Converting String Objects to Numbers. 347
Learning About the StringBuilder
and StringBuffer Classes 352
DontDolt 358
Key Terms e 359
Chapter Summary 359
Exercises.o 362
Arrays.369
Declaring an Array. 370
Initializing an Arrayo 375
Using Variable Subscripts with an Array 378
Using the Enhanced for Loop 380
Using PartofanArray 380
Declaring and Using Arrays of Objects 383
Using the Enhanced for Loop with Objects 385
Manipulating Arrays of Strings 385
Searching an Array and Using Parallel Arrays 392
Using Parallel Arrays 393
Searching an Array for a Range Match. 395
Passing Arrays to and Returning Arrays from Methods . . .399
Returning an Array from a Method 402
Don'tDolt 405
Key Terms 405
Chapter Summary 405
Exercises. 409

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-202

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Advanced Array Concepts 416
Sorting Array Elements Using the Bubble Sort Algorithm . .417

Using the Bubble Sort Algorithm 418
Improving Bubble Sort Efficiency 420
Sorting Arrays of Objects 420
. X Sorting Array Elements Using the Insertion
Sort Algorithm. 425
Using Two-Dimensional and Other Multidimensional Arrays. .430
Passing a Two-Dimensional Array to a Method 433
Using the Tength Field with a Two-Dimensional Array. . .433
Understanding Jagged Arrays 434
Using Other Multidimensional Arrays 435
Using the Arrays Class 438
Using the ArrayList Class 446
Creating Enumerations. 449
DontDolt 456
Key Terms 456
Chapter Summary, 456
Exercises.o 460

Introduction to Inheritance 467

Learning About the Concept of Inheritance. 468
Diagramming Inheritance Using the UML. 468
Inheritance Terminology 470

Extending Classes. 472

Overriding Superclass Methods. 479
Using the @OverrideTag 480

Calling Constructors During Inheritance 483
Using Superclass Constructors that Require Arguments. .484

Accessing Superclass Methods. 489
Comparing this and super 491

Employing Information Hiding. 493

Methods You Cannot Override 495
A Subclass Cannot Override static Methods

inlts Superclass. 495
A Subclass Cannot Override final Methods

inlts Superclass. 499
A Subclass Cannot Override Methods in a

final Superclass 501

DontDolt 502

Key Terms 502

Chapter Summary 503

Exercises. 506

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-202

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Advanced Inheritance Concepts. 513

Creating and Using Abstract Classes 514
Using Dynamic Method Binding 523
Using a Superclass as a Method Parameter Type. 525
Creating Arrays of Subclass Objects 527 .
Using the Object Class and Its Methods 530 X .
Using the toString() Method. 532
Using the equals() Method. 535
Using Inheritance to Achieve Good Software Design540
Creating and Using Interfaces 541
Creating Interfaces to Store Related Constants 548
Using Anonymous Inner Classes and Lambda Expressions. .552
Lambda Expressions. 554
Creating and Using Packages. 555
DontDolt 557
Key Terms 558
Chapter Summary 558
Exercises.o 562

Exception Handling 570

Learning About Exceptions. 571

Trying Code and Catching Exceptions 576
Using a try Block to Make Programs “Foolproof”580
Declaring and Initializing Variables in try..catch

Blocks 582
Throwing and Catching Multiple Exceptions 585
Using the finallyBlock 591

Understanding the Advantages of Exception Handling. . . .593
Specifying the Exceptions that a Method Can Throw596

Tracing Exceptions Through the Call Stack. 600
Creating Your Own Exception Classes. 605
Using Assertions 608
Displaying the Virtual Keyboard. 622
DontDolt 625
Key Terms 626
Chapter Summary 626
Exercises. 630
File Input and Qutput 635
Understanding Computer Files 636
Using the Path and Files Classes. 638

CreatingaPath 638

Retrieving Information AboutaPath. 640

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-202

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Converting a Relative Path to an Absolute One 641

Checking File Accessibility 642
DeletingaPath 643
Determining File Attributes 645
File Organization, Streams, and Buffers 648
Xii Using Java’'s 10 Classes 651
WritingtoaFile. 654
Reading fromafFile 656
Creating and Using Sequential Data Files 657
Learning About Random Access Files 663
Writing Records to a Random Access Data File. 667
Reading Records from a Random Access Data File 673
Accessing a Random Access File Sequentially 674
Accessing a Random Access File Randomly 675
DontDolt 689
Key Terms 689
Chapter Summary 689
Exercises. 693

Introduction to Swing Components 698

Understanding Swing Components 699
Using the JFrame Class 700
Customizing a JFrame’s Appearance 704
Using the JLabeTl Class 708
Changing a JLabel'sFont. 710
Using a Layout Manager 712
Extending the JFrame Class 715
Adding JTextFields and JButtons to a JFrame. 718
Adding JTextFields 718
Adding JButtons. 720
Learning About Event-Driven Programming. 724
Preparing Your Class to Accept Event Messages 725
Telling Your Class to Expect Events to Happen. 726
Telling Your Class How to Respond to Events 726
An Event-Driven Program. 727
Using Multiple Event Sources. 728
Using the setEnabled() Method 730
Understanding Swing Event Listeners. 733
Using the JCheckBox, ButtonGroup,
and JComboBox Classes 736
The JCheckBox Class. 736
The ButtonGroup Class 740
The JComboBox Class. 741

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-202

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

DontDolt 748
Key Terms e 749

Chapter Summary 749
Exercises.o 753
Using JavaFX and Scene Builder 758 il .
What Is JavaFX?. 759

The Life Cycle of JavaFX Applications 760
Understanding JavaFX Structure: Stage, Scene,
Panes, and Widgets 762

Deploying JavaFX Applications 768
Creating JavaFX Applications Using Scene Builder 768
Scene Builder Sections 773

Using Widgets as Design Elements in FXML Layouts . . .774
Using CSS to Create Visual Effects 778

Creating Animations in JavaFX 785
Don'tDolt 790
Key Terms 790
Chapter Summary 790
EXEercises. 795

Working with the Java Platform 799
Data Representation. 804
Formatting Output. 810
Generating Random Numbers. 820
Javadoc 826
Glossary.834
Index853

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-202

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Preface

Xiv

Java Programming, Ninth Edition, provides the beginning programmer with a guide to
developing applications using the Java programming language. Java is popular among
professional programmers because it can be used to build visually interesting graphical user
interface (GUI) and Web-based applications. Java also provides an excellent environment
for the beginning programmer—a student can quickly build useful programs while learning
the basics of structured and object-oriented programming techniques.

This textbook assumes that you have little or no programming experience. It provides

a solid background in good object-oriented programming techniques and introduces
terminology using clear, familiar language. The programming examples are business
examples; they do not assume a mathematical background beyond high school business
math. In addition, the examples illustrate only one or two major points; they do not
contain so many features that you become lost following irrelevant and extraneous details.
Complete, working programs appear frequently in each chapter; these examples help
students make the transition from the theoretical to the practical. The code presented in
each chapter also can be downloaded from the publisher’s website, so students easily can
run the programs and experiment with changes to them.

The student using Java Programming, Ninth Edition, builds applications from the bottom
up rather than starting with existing objects. This facilitates a deeper understanding of

the concepts used in object-oriented programming and engenders appreciation for the
existing objects students use as their knowledge of the language advances. When students
complete this book, they will know how to modify and create simple Java programs,

and they will have the tools to create more complex examples. They also will have a
fundamental knowledge about object-oriented programming, which will serve them well in
advanced Java courses or in studying other object-oriented languages such as C++, C#, and
Visual Basic.

Organization and Coverage

Java Programming, Ninth Edition, presents Java programming concepts, enforcing good
style, logical thinking, and the object-oriented paradigm. Objects are covered right from
the beginning, earlier than in many other textbooks. You create your first Java program
in Chapter 1. Chapters 2, 3, and 4 increase your understanding about how data, classes,
objects, and methods interact in an object-oriented environment.

Chapters 5 and 6 explore input and repetition structures, which are the backbone of
programming logic and essential to creating useful programs in any language. You learn
the special considerations of string and array manipulation in Chapters 7, 8, and 9.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-202

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

New in This Edition

Chapters 10, 11, and 12 thoroughly cover inheritance and exception handling. Inheritance
is the object-oriented concept that allows you to develop new objects quickly by adapting
the features of existing objects; exception handling is the object-oriented approach to
handling errors. Both are important concepts in object-oriented design. Chapter 13
provides information about handling files so you can store and retrieve program output.

Chapter 14 introduces GUI Swing components, which are used to create visually pleasing, Xv .
user-friendly, interactive applications.

Chapter 15 introduces JavaFX, which is the newest platform for creating and delivering
applications for the desktop and the Internet. Chapter 15 is written by Sandra Lavallee,
a professor and Computer and Design Technologies Department chairperson at Lakes

Region Community College in Laconia, New Hampshire.

New in This Edition

The following features are new for the Ninth Edition:
e Java 9e: All programs have been tested using Java 9e, the newest edition of Java.

e Windows 10: All programs have been tested in Windows 10, and all screen shots have
been taken in this environment.

¢ Programming exercises: Each chapter contains several new programming exercises
not seen in previous editions. All exercises and their solutions from the previous edition
that were replaced in this edition are still available on the Instructor Companion site.

¢ Anonymous inner classes and lambda expressions: These two new topics are
introduced in this edition of the book.

e JavaFX: This edition includes coverage of JavaFX.
Additionally, Java Programming, Ninth Edition, includes the following features:

e OBJECTIVES: Each chapter begins with a list of objectives so you know the topics that
will be presented in the chapter. In addition to providing a quick reference to topics
covered, this feature provides a useful study aid.

e YOU DO IT: In each chapter, step-by-step exercises help students create multiple
working programs that emphasize the logic a programmer uses in choosing statements
to include. These sections provide a means for students to achieve success on their
own—even those in online or distance learning classes.

e NOTES: These highlighted tips provide additional information—for example, an
alternative method of performing a procedure, another term for a concept, background
information about a technique, or a common error to avoid.

o EMPHASIS ON STUDENT RESEARCH: The student frequently is directed to
the Java website to investigate classes and methods. Computer languages evolve,
and programming professionals must understand how to find the latest language
improvements. This book encourages independent research.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-202

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

New in This Edition

e FIGURES: Each chapter contains many figures. Code figures are most frequently
25 lines or fewer, illustrating one concept at a time. Frequent screen shots show exactly
how program output appears. Callouts appear where needed to emphasize a point.

e COLOR: The code figures in each chapter contain all Java keywords in blue. This helps
students identify keywords more easily, distinguishing them from programmer-selected
xvi names.

e FILES: More than 200 student files can be downloaded from the publisher’s website.
Most files contain the code presented in the figures in each chapter; students can run
the code for themselves, view the output, and make changes to the code to observe
the effects. Other files include debugging exercises that help students improve their
programming skills.

e TWO TRUTHS & A LIE: A short quiz reviews each chapter section, with answers
provided. This quiz contains three statements based on the preceding section of
text—two statements are true, and one is false. Over the years, students have requested
answers to problems, but we have hesitated to distribute them in case instructors want
to use problems as assignments or test questions. These true-false quizzes provide
students with immediate feedback as they read, without “giving away” answers to the
multiple-choice questions and programming exercises.

e DON’T DO IT: This section at the end of each chapter summarizes common mistakes
and pitfalls that plague new programmers while learning the current topic.

o KEY TERMS: Each chapter includes a list of newly introduced vocabulary, shown in
the order of appearance in the text. The list of key terms provides a short review of the
major concepts in the chapter.

o SUMMARIES: Following each chapter is a summary that recaps the programming
concepts and techniques covered in the chapter. This feature provides a concise means
for students to check their understanding of the main points in each chapter.

e REVIEW QUESTIONS: Each chapter includes 20 multiple-choice questions that serve
as a review of chapter topics.

e GAME ZONE: Each chapter provides one or more exercises in which students can
create interactive games using the programming techniques learned up to that point;
50 game programs are suggested in the book. The games are fun to create and play;
writing them motivates students to master the necessary programming techniques.
Students might exchange completed game programs with each other, suggesting
improvements and discovering alternate ways to accomplish tasks.

e CASES: Each chapter contains two running case problems. These cases represent
projects that continue to grow throughout a semester using concepts learned in each
new chapter. Two cases allow instructors to assign different cases in alternate semesters
or to divide students in a class into two case teams.

e GLOSSARY: A glossary contains definitions for all key terms in the book.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-202

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Instructor Companion Site

e APPENDICES: This edition includes useful appendices on working with the Java
platform, data representation, formatting output, generating random numbers, and
creating Javadoc comments.

e QUALITY: Every program example, exercise, and game solution was tested by the
author and then tested again by a quality assurance team using Java Standard Edition
(SE) 9, the most recent version available. E.

Instructor Resources
MindTap

MindTap activities for Java Programming, Ninth Edition are designed to help students
master the skills they need in today’s workforce. Research shows employers need critical
thinkers, troubleshooters, and creative problem-solvers to stay relevant in our fast-paced,
technology-driven world. MindTap helps you achieve this with assignments and activities
that provide hands-on practice and real-life relevance. Students are guided through
assignments that help them master basic knowledge and understanding before moving on
to more challenging problems.

All MindTap activities and assignments are tied to defined unit learning objectives.
Hands-on coding labs provide real-life application and practice. Readings and dynamic
visualizations support the lecture, while a post-course assessment measures exactly

how much a student has learned. MindTap provides the analytics and reporting to easily
see where the class stands in terms of progress, engagement, and completion rates.

Use the content and learning path as-is, or pick-and-choose how our materials will wrap
around yours. You control what the students see and when they see it. Learn more at
http://www.cengage.com/mindtap/.

The Java Programming MindTap also includes:

e Unit Quizzes: Students apply what they have learned in each unit by taking the quizzes
provided in the learning path.

e Video Lessons: Each unit is accompanied by video lessons that help to explain
important unit concepts. These videos were created and narrated by the author.

o Interactive Study Aids: Flashcards and crossword puzzles help users review main
concepts from the units and coding Snippets allow students to practice key coding
concepts.

Instructor Companion Site

The following teaching tools are available for download at the Companion Site for this text.
Simply search for this text at www.cengagebrain.com and choose “Instructor Downloads”
An instructor login is required.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-202

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Acknowledgments

¢ Instructor’s Manual: The Instructor’s Manual that accompanies this textbook includes
additional instructional material to assist in class preparation, including items such as
Overviews, Chapter Objectives, Teaching Tips, Quick Quizzes, Class Discussion Topics,
Additional Projects, Additional Resources, and Key Terms. A sample syllabus also is

available.
.E e Test Bank: Cengage Testing Powered by Cognero is a flexible, online system that allows
you to:

o Author, edit, and manage test bank content from multiple Cengage solutions.
o Create multiple test versions in an instant.
o Deliver tests from your LMS, your classroom, or wherever you want.

e PowerPoint Presentations: This text provides PowerPoint slides to accompany each
chapter. Slides can be used to guide classroom presentations, to make available to
students for chapter review, or to print as classroom handouts.

» Student Files: Files are provided for every figure in the text. Instructors can use the
files to customize PowerPoint slides, illustrate quizzes, or create handouts.

e Solutions: Solutions to all programming exercises are available. If an input file is
needed to run a programming exercise, it is included with the solution file.

o Data Files: Data files necessary to complete the steps and projects in the book are
available at www.cengagebrain.com, or your instructor will provide the data files to you.

Acknowledgments

I would like to thank all of the people who helped to make this book a reality, including
Natalie Onderdonk, Learning Designer; Michele Stulga, Content Project Manager; and
John Freitas, Quality Assurance Tester. I am lucky to work with these professionals who are
dedicated to producing high-quality instructional materials.

I am also grateful to the reviewers who provided comments and encouragement during this
book’s development, including Cliff Brozo, Monroe College; Fred D’Angelo, University of
Arizona; Cassandra Henderson, Albany Technical College; Zack Hubbard, Rowan-Cabarrus
Community College; and Sandra Lavallee, Lakes Region Community College.

Thanks, too, to my husband, Geoff, for his constant support, advice, and encouragement.
Finally, this book is dedicated to George Edward Farrell Peterson and Clifford Geoffrey
Farrell Peterson. You each had a book dedicated to you earlier, but those books were
published before I knew your names. Now you are here, and I love you!

Joyce Farrell

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-202

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Using Your Own Computer

Read This Before You Begin

The following information will help you as you prepare to use this textbook.

To the User of the Data Files

To complete the steps and projects in this book, you need data files that have been created
specifically for this book. Your instructor will provide the data files to you. You also can
obtain the files electronically from www.CengageBrain.com. Find the ISBN of your title

on the back cover of your book, then enter the ISBN in the search box at the top of the

Cengage Brain home page. You can find the data files on the product page that opens. Note

that you can use a computer in your school lab or your own computer to complete the
exercises in this book.

Using Your Own Computer

To use your own computer to complete the steps and exercises, you need the following:

e Software: Java SE 9, available from www.oracle.com/technetwork/java/index.html.

Although almost all of the examples in this book will work with earlier versions of Java,
this book was created using Java 9e. You also need a text editor, such as Notepad. A few

exercises ask you to use a browser for research. Chapter 15 uses NetBeans to develop
JavaFX programs; you can downoad this software from Https:netbens.org.

e Hardware: For operating system requirements (memory and disk space), see
http://java.com/en/download/help.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-202

Xix

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Features

This text focuses on helping students become better programmers and
understand Java program development through a variety of key features.
In addition to Chapter Objectives, Summaries, and Key Terms, these useful

xx features will help students regardless of their learning styles.

Using Data
sections

walk students through
program development
Declaring and Using a Variable Step by Step

In this section, you write an application to work with a variable and a constant.

A You Do It
\

1. Open a new document in your text editor. Create a class header and an opening
and closing curly brace for a new class named Databemo by typing the following:

public class DataDemo
1

2. Between the curly braces, indent a few spaces and type the following main()
method header and its curly braces:

public static void main(String[] args)

}

3. Between the main() method's curly brag
declaration:

Using Data
int aWholeNumber = 315;

Confirm dialog boxes provide more practical uses when your applications can make decisions based on the
users’ responses. In the chapter “Making Decisions,” you will learn how to make decisions within programs.

provide
additional information—
for example, another
|Ocati0n in the bOOk th javal Using the JOptionPane Class to Accept GUI Input

eXpands Ona tODIC, ora 1. You can create an input dialog box using the showInputDialog() method;
common error to wa h the method returns a String that represents a user’s response.

2. You can use methods from the Java classes Integer and Double when you
OUt for. want to convert a dialog box’s returned values to numbers.

3. Aconfirm dialog box can be created using the showConfirmdialog()
method in the JOptionPane class; a confirm dialog box displays the options

PrintStream; you will recall from Cha Accept, Reject, and Escape.

for the out object used with the print
of methods in the Method Summary, a
and print1n() methods, including ont ‘|9oue)

and so on. In the last two statements . Pue ‘0N ‘saA suondo au} SAe|dsip x0q SO[eIp LWUYUOD Y/ “E4 SI JUBLLIBJL}S 3S[ey By | -

@ Watch the video Getting Input.

forming Arithmetic Using Variables and Constants

e 2-8 describes the five standard arithmetic operators that you use to perform calcula-
5 with values in your programs. A value used on either side of an operator is an operand.
>xample, in the expression 45 + 2, the numbers 45 and 2 are operands. The arithmetic
ators are examples of binary operators, so named because they require two operands.

You will learn about the Java shortcut arithmetic operators in the chapter “Looping.”

help explain
important chapter concepts.
Videos are part of the eBook in
MindTap and are also posted on Kitriseg®
the Instructor Companion Site. imes; 3815,3715,36 /5

s two types of division:
ands are floating-point
—Bernice Cunningham,
Wayne County Community
College District

Copyright 2019 Cengage Learning. All Right:

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

FEATURES

Comparing Procedural and Object-Oriented Programming Concepts

TWO TRUTHS & A LIE quizzes appear
| omme ke after each chapter section, with answers
ncah oo T 5 e secon b of he rberd stemers s i, provided. The quiz contains three state-
one is false. Identify the false statement and explain why it is false. . .
ments based on the preceding section of

1. Unlike a low-level programming language, a highJevel programming language
allows you to use a vocabulary of reasonable terms instead of the sequences
of on-and-off switches that perform the corresponding tasks. t t tW t t t t d H
2 ey rror ccurs whens it te s of g ot and EXT—IWO Statements are true and one Is .
repairing all syntax errors is part of the process of debugging a program. . . . XXI
3. Logiconrs r iy syt fo st e sttt s 5 false. Answers give immediate feedback

program finds allthe logic errors for you.

B — without “giving away” answers to the
o A : ; - :
multiple-choice questions and programming
Comparing Procedural and Object-Oriented problems later in the chapter. Students also
Programming Concepts

L have the option to take these quizzes in
MindTap.

Procedural Programming

Procedural ing is a style of ing in which It executed one
after another in sequence.

The typical procedural program defines and uses named computer memory locations that
are called variables. Variables hold the data a program uses. For example, data might be
read from an input device and stored in a location the programmer has named rate0fPay. CHAPTER 3
The variable value might be used in an arithmetic statement, used as the basis for a
decision, sent to an output device, or have other operations performed with it. The data
stored in a variable can change, or vary, during a program’s execution.

Using Methods, Classes, and Objects

For convenience, the individual operations used in 2 computer program are often grouped (continued)
into logical units called procedures. For example, a series of four or five comparisons and

calculations that together determine a person's federal withholding tax value might be where itis assigned to the object used in the method call. Add a closing curly
grouped as a procedure named calculateFederalWithholding(). (As a convention, this brace for the method.

book will show parentheses following every procedure name.) As a procedural computer m sarvica satsenviceDaseription(sarvice;

executes its statements, it can sometimes pause to call a procedure. When a program Servicelsstrricatprie’

return service;
}

8. Save the file, compile it, and execute it. The execution looks no different from the
original version in Figure 3-28 earlier in this chapter, but by creating a method
that accepts an unfilled Spaservice object and returns one filled with data, you
have made the main() method shorter and reused the data entry code.

. Don't Do It
sections at the end of Dot place el e ofa metho heder Aferyou et s o ping

. . .- semicolons at the end of every statement, it's easy to start putting them in too many
each cha pter list advice for avoidi ng places. Method headers never end in a semicolon.
common programming errors.

Don't think “default constructor” means only the automatically supplied constructor:
Any constructor that does not accept parameters is a default constructor.

Don't think that a class’s methods must accept its own fields’ values as parameters or
return values to its own fields. When a class contains both fields and methods, each
method has direct access to every field within the class.

Don't create a class method that has a parameter with the same identifier as a class
field—yet. If you o, you will only be allowed to access the local variable within the

method, and you will not be able to access the field. You will be able to use the same
identifier and still access both values after you read the next chapter. For now, make
sure that the parameter in any method has a different identifier from any field.

Using the Scanner Class to Accept Keyboard Input ; Key Terms

It s legal to write a single prompt that requests multiple input values—for example, f““';"d “""l"‘;"“:" “ stub i
Please enter your age, area code, and zip code >>. The user could then enter the three invoke method header access modifier
values separated with spaces, tabs, or Enter key presses. The values would be interpreted call. declaration return type
as separate tokens and could be retrieved with three separate nextInt() method calls. calling method method body retnm a value
. called method implementation fully qualified identifier

However, asking a user to enter multiple values is more likely to lead to mistakes. For
example, if a program asks a user to enter a name, address, and birthdate all at once, the
user is likely to forget one of the values or to enter them in the wrong order. This book will
follow the practice of using a separate prompt for each input value required.

Pitfall: Using nextLine () Following One of the Other Scanner
Input Methods

You can encounter a problem when you use one of the numeric Scanner class retrieval
methods or the next() method before you use the nextLine() method. Consider the pro-
gram in Figure 2-19, It is identical to the one in Figure 2-17, except that the user is asked for
an age before being asked for a name. Figure 2-20 shows a typical execution.

illustrates
how NOT to do something—for
example, having a dead code path
in a program. This icon provides a

Don'tDo it

dmport java.util.Scanner;
public class GetUserInfo2

public static void main(String[] args)
1
String nane;
int age;
Scanner inputDevice « new Scanner:
System.out.print("Please enter 46

visual jolt to the student, emphasizing
e that particular figures are NOT to be

name = inputDevice.nextLine();
System.out.printIn("Your name is " + name +
"and you are " + age + " years old.");

emulated and making students more
careful to recognize problems in
existing code.

Figure 219 The GetUserTnfo? class

Figure 220 Typical execution of the GetUserTnfo2 program

t be copied, scanned, or duplicated, in whole or in part. WCN 02-200-202

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Assessment

. . PROGRAMMING EXERCISES
—Leslie Spivey,

Edison Community College

Using Methods, Classes, and Objects

* A constructor establishes an object and provides specific initial values for the object’s
data fields. A constructor always has the same name as the class of which it is a member.
By default, numeric fields are set to 0 (zero), character fields are set to Unicode
“\u0000’, Boolean fields are set to false, and object type fields are set to nu11.

o Aclass is an abstract, programmer-defined data type, similar to Java’s built-in, primitive
m data types.

Review Questions

1. InJava, methods must include all of the following except

a. a call to another method c. curly braces
b. adeclaration d. abody

2. All method declarations contain

a. arguments

b. one or more explicitly named a Exercises

c. parentheses
d. the keyword static

Exercises

3. Apublic static method named c
method from within CTassB, use th

@ Programming Exercises

a. ClassA.computeSum();
b. ClassB(computeSumQ);
(comp O 1. Suppose that you have created a program with only the following variables.
c. ComputeSum(ClassA);
d. You cannot call computeSum() int x = 2;
int y = 3;

4. Which of the following method decl
named displayFacts() if the meth Suppose that you also have a method with the following header:

a. public static int displayF: public static void mathMethod(int x)

b. public void displayFacts(i Which of the following method calls are legal?
¢ public static void display a. mathMethod(x); f. mathMethod(12);
d. Two of these are correct. b. mathMethod(y); g. mathMethod(12.2);
5. The method with the declaration pul c. mathMethod(x, y); h. mathMethod();
method type of d. mathMethod(x + y); i, mathMethod(a);
a. static mathMethod (12L); j. mathMethod(a / x);
b. int 2. Suppose that you have created a program with only the following variables.
c. double int 34
nt age = 34;
d. You cannot determine the met] : 9

int weight = 180;
double height = 5.9;

Suppose that you also have a method with the following header:
public static void calculate(int age, double size)

Which of the following method calls are legal?

a. calculate(age, weight); f. calculate(12, 120.2);

b. calculate(age, height); g. calculate(age, size);

c. calculate(weight, height); h. calculate(2, 3);
REVIEW QUEsTIONs d. calculate(height, age); i. calculate(age);

e. calculate(45.5, 120); j. calculate(weight, weight);

Suppose that a class named Bicycle contains a private nonstatic integer named
height, a public nonstatic String named mode1, and a public static integer named
wheels. Which of the following are legal statements in a class named BicycleDemo
that has instantiated an object as Bicycle myBike = new Bicycle();?

a. myBike.height = 26; f. Bicycle.model = "Hurricane";
b. myBike.model = "Cyclone"; g Bicycle.int = 3;

c. myBike.wheels = 3; h. Bicycle.model = 108;

d. myBike.model = 108; i. Bicycle.wheels = 2;

e. Bicycle.height = 24; j. Bicycle yourBike = myBike;

Copyright 2019 Cengage Learning. All Right:

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Creating Java Programs

Appendix D contains information about generating random numbers. To fully

nrsand e procs. o et e oer bt v e and thods DEBUGGING EXERCISES
For now, however, you can copy the following statement to generate and use a] o

dilog box hat isplas a fandom mumber becween 1 and 10, are included with each chapter

JOptionPane . showM Dialog(null,"Th ber i ni
L TR e e e because examining programs
Write a Java application that displays two dialog boxes in sequence. The first asks Critica”y and Closely iS a CrUCiaI

you to think of a number between 1 and 10. The second displays a randomly

generated number; the user can see whether his or her guess was accurate. p ro g ramm |n g [S k| " : Stu d e nts

(In future chapters, you will improve this game so that the user can enter a
guess and the program can determine whether the user was correct. If you

b youalso v el the wser hov fa o the gesswas, whether the guess was can download these exercises
}[.{.ag:;; :é/u:::l;;t;vlde a specific number of repeat attempts.) Save the file as a t WWW. Cengage brain. com.
Q) case Probiems These files are also available
The case problems in this section introduce two fictional businesses. Throughout this tO InStrUCtorS thrOU h

2k, you will create increasingly complex classes for these businesses that use the newest S SO C en ga ge C Om

epts you have mastered in each chapter.

1. Carly’s Catering provides meals for parties and special events. Write a program
that displays Carly’s motto, which is “Carly’s makes the food that makes it a
party” Save the file as CarlysMotto.java. Create a second program that displays
the motto surrounded by a border composed of asterisks. Save the file as
CarlysMotto2.java.

2. Sammy’s Seashore Supplies rents beach equipment such as kayaks, canoes, beach
chairs, and umbrellas to tourists. Write a program that displays Sammy’s motto,
which is “Sammy’s makes it fun in the sun”” Save the file as SammysMotto.java.
Create a second program that displays the motto surrounded by a border
composed of repeated Ss. Save the file as SammysMotto2.java.

Exercises

* Debugging Exercises

Each of the following files in the Chapter01 folder in your downloadable
student files has syntax and/or logic errors. In each case, determine the

problem and fix the errors. After you correct the errors, save each file using
the same filename preceded with Fix. For example, DebugOnel java will

become FixDebugOnel.java.

CASE PROBLEMS

a. DebugOnel.java c. DebugOne3.java
b. DebugOne2java d. DebugOne4java

When you change a filename, remember to change every instance of the class name within the file so
that it matches the new filename. In Java, the filename and class name must always match.

%,2 Game Zone

1. In1952, A.S. Douglas wrote his University of Cambridge Ph.D. dissertation on
human-computer interaction, and created the first graphical computer game—a
version of Tic-Tac-Toe. The game was programmed on an EDSAC vacuum-tube
mainframe computer. The first computer game is generally assumed to be
“Spacewar!’ developed in 1962 at MIT; the first commercially available video
game was “Pong,” introduced by Atari in 1973. In 1980, Atari’s “Asteroids”
and “Lunar Lander” became the first video games to be registered in the U.S.
Copyright Office. Throughout the 1980s, players spent hours with games that
now seem very simple and unglamorous; do you recall playing “Adventure,
“Oregon Trail “Where in the World Is Carmen Sandiego?)” or “Myst"?

Today, commercial computer games are much more complex; they require

many programmers, graphic artists, and testers to develop them, and large

o management and marketing staffs are needed to promote them. A game might
are included at the end of cost many millions of dollars to develop and market, but a successful game might

earn hundreds of millions of dollars. Obviously, with the brief introduction

each cha pter. Stu dents to programming you have had in this chapter, you cannot create a very

sophisticated game. However, you can get started.

can create games as an For games to hold your interest, they almost always include some random,
" - unpredictable behavior. For example, a game in which you shoot asteroids loses
additional entertaini ng way to some of its fun if the asteroids follow the same, predictable path each time you

play the game. Therefore, generating random values is a key component in

U n d e rStand key p Og a IT] m | n g creating most interesting computer games.
concepts.

Copyright 2019 Cengage Learning. All Rights Reserved.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-202

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Creating Java
Programs

Upon completion of this chapter, you will be able to:

Define basic programming terminology

©)

Compare procedural and object-oriented programming

©)

Describe the features of the Java programming language

©)

Analyze a Java application that produces console output

(©)

Compile a Java class and correct syntax errors

©)

Run a Java application and correct logic errors

©)

Add comments to a Java class

©)

Create a Java application that produces GUI output
Find help

(©)

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-202

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Creating Java Programs

Learning Programming Terminology

A computer program is a set of instructions that you write to tell a computer what to do.
Computer equipment, such as a monitor or keyboard, is hardware, and programs are
software. A program that performs a task for a user (such as calculating and producing

.) paychecks, word processing, or playing a game) is application software; a program that

manages the computer itself (such as Windows or Linux) is system software. The logic
behind any computer program, whether it is an application or system program, determines
the exact order of instructions needed to produce desired results. Much of this book
describes how to develop the logic to create programs that are application software, called
applications (or, especially if used on a mobile device, apps) for short.

You can write computer programs in a high-level programming language such as

Java, Visual Basic, C++, or C#. A high-level programming language allows you to use
English-like, easy-to-remember terms such as read, write, and add. These languages are
called high-level languages to distinguish them from low-level languages that correspond
closely to a computer’s circuitry and are not as easily read or understood. Because they
correspond to circuitry, low-level languages must be customized for every type of machine
on which a program runs.

All computer programs ultimately are converted to the lowest level language, which

is machine language. Machine language, or machine code, is the most basic set of
instructions that a computer can execute. Each type of processor (the internal hardware
that handles computer instructions) has its own set of machine language instructions.
Programmers often describe machine language using 1s and Os to represent the on-and-off
circuitry of computer systems.

system in detail. Later in this chapter, you will learn that bytecode is the name for the binary code

ﬂ The system that uses only 1s and Os is the binary numbering system. Appendix B describes the binary
created when Java programs are converted to machine language.

Every programming language has its own syntax, or rules about how language elements are
combined correctly to produce usable statements. For example, depending on the specific
high-level language, you might use the verb print or write to produce output. All languages
have a specific, limited vocabulary (the language’s keywords) and a specific set of rules for
using that vocabulary. When you are learning a computer programming language, such as
Java, C++, or Visual Basic, you are learning the vocabulary and syntax for that language.

Using a programming language, programmers write a series of program statements, which
are similar to English sentences. The statements carry out the program’s tasks. Program
statements are also known as commands because they are orders to the computer, such as
Output this word or Add these two numbers.

After the program statements are written in a high-level programming language, a
computer program called a compiler or interpreter translates the statements into machine
language. A compiler translates an entire program before carrying out any statements,

or executing them, whereas an interpreter translates one program statement at a time,

executmgj a statement as soon as it is translated.
Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-202

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Learning Programming Terminology

For example, C++ is a compiled language, and Visual Basic is an interpreted language. Each type of
translator has its supporters; programs written in compiled languages execute more quickly, whereas
programs written in interpreted languages can be easier to develop and debug. Java uses the best of
both technologies: a compiler to translate your programming statements and an interpreter to read the
compiled code line by line when the program executes (also called at run time).

ﬂ Whether you use a compiler or interpreter often depends on the programming language you use.

Compilers and interpreters issue one or more error messages each time they encounter
an invalid program statement—that is, a statement containing a syntax error, or misuse
of the language. Examples of syntax errors include misspelling a keyword or omitting a
word that a statement requires. When a syntax error is detected, the programmer can
correct the error and attempt another translation. Repairing all syntax errors is the first
part of the process of debugging a program—freeing the program of all flaws or errors,
also known as bugs. Figure 1-1 illustrates the steps a programmer takes while developing
an executable program. You will learn more about debugging Java programs later in this
chapter.

As Figure 1-1 shows, you might write a program that compiles successfully (that is, it
contains no syntax errors), but it still might not be a correct program because it might
contain one or more logic errors. A logic error is a bug that allows a program to run, but
that causes it to operate incorrectly. Correct logic requires that all the right commands be
issued in the appropriate order. Examples of logic errors include multiplying two values
when you meant to divide them or producing output prior to obtaining the appropriate
input. When you develop a program of any significant size, you should plan its logic before
you write any program statements.

Correcting logic errors is much more difficult than correcting syntax errors. Syntax errors
are discovered by the language translator when you compile a program, but a program can
be free of syntax errors and execute while still retaining logic errors. Sometimes you can
find logic errors by carefully examining the structure of your program (when a group of
programmers do this together, it is called a structured walkthrough), but sometimes you
can identify logic errors only when you examine a program’s output. For example, if you
know an employee’s paycheck should contain the value $4,000, but when you examine a
payroll program’s output you see that it holds $40, then a logic error has occurred. Perhaps
an incorrect calculation was performed, or maybe the hours worked value was output

by mistake instead of the net pay value. When output is incorrect, the programmer must
carefully examine all the statements within the program, revise or move the offending
statements, and translate and test the program again.

example, suppose that a program should multiply two values entered by the user, that the user
enters two 2s, and the output is 4. The program might actually be adding the values by mistake.
The programmer would discover the logic error only by entering different values, such as 5 and 7,
and examining the result.

ﬂ Just because a program produces correct output does not mean it is free from logic errors. For

Programmers call some logic errors semantic errors. For example, if you misspell a programming
language word, you commit a syntax error, but if you use a correct word in the wrong context, you

commit a semantic error.
Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-202

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Creating Java Programs

Plan program logic

Write program language statements
that correspond to the logic

Use translating software (a compiler or
interpreter) that translates programming
language statements to machine language

Debugging process

Can all statements
be successfully
translated?

Examine list of
syntax errors

Debugging process

Execute the program

;

Examine
program output

Are there runtime Yes

or output errors?

No

Figure 1-1 The program development process

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-202

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Comparing Procedural and Object-Oriented Programming Concepts

TWO TRUTHS ALIE

Learning Programming Terminology

In each “Two Truths & a Lie” section, two of the numbered statements are true, and 5 .
one is false. Identify the false statement and explain why it is false.

1. Unlike a low-level programming language, a high-level programming language
allows you to use a vocabulary of reasonable terms instead of the sequences
of on-and-off switches that perform the corresponding tasks.

2. A syntax error occurs when you violate the rules of a language; locating and
repairing all syntax errors is part of the process of debugging a program.

3. Logic errors are fairly easy to find because the software that translates a
program finds all the logic errors for you.

"SJ04J3 XeJUAS JO 934} SI Jey) wes3oid e ul 1SIXa [|iS Ued S0l
2180] INq ‘sJ0.4Ja XJUAS Spuly Jojejsues) a8enSue| i "S# S JUSWS)LIS BS[e) Y|

Comparing Procedural and Object-Oriented
Programming Concepts

Procedural programming and object-oriented programming describe two different
approaches to writing computer programs.

Procedural Programming

Procedural programming is a style of programming in which operations are executed one
after another in sequence.

The typical procedural program defines and uses named computer memory locations that
are called variables. Variables hold the data a program uses. For example, data might be
read from an input device and stored in a location the programmer has named rateOfPay.
The variable value might be used in an arithmetic statement, used as the basis for a
decision, sent to an output device, or have other operations performed with it. The data
stored in a variable can change, or vary, during a program’s execution.

For convenience, the individual operations used in a computer program are often grouped
into logical units called procedures. For example, a series of four or five comparisons and
calculations that together determine a person’s federal withholding tax value might be
grouped as a procedure named calculateFederalWithholding(). (As a convention, this
book will show parentheses following every procedure name.) As a procedural computer
executes its statements, it can sometimes pause to call a procedure. When a program

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Creating Java Programs

calls a procedure, the current logic is temporarily suspended so that the procedure’s
commands can execute. A single procedural program might contain any number of
procedure calls. Procedures are also called modules, methods, functions, and subroutines.
Users of different programming languages tend to use different terms. As you will learn
later in this chapter, Java programmers most frequently use the term method.

Object-Oriented Programming

Object-oriented programming is an extension of procedural programming in which you
take a slightly different approach to writing computer programs. Writing object-oriented
programs involves:

e Creating classes, which are blueprints for objects
e Creating objects, which are specific instances of those classes

e Creating applications that manipulate or use those objects

Programmers use OO as an abbreviation for object-oriented; it is pronounced “oh oh.” Object-oriented
programming is abbreviated OOP, and pronounced to rhyme with soup.

Originally, object-oriented programming was used most frequently for two major types of
applications:

e Computer simulations, which attempt to mimic real-world activities so that their
processes can be improved or so that users can better understand how the real-world
processes operate

e Graphical user interfaces, or GUIs (pronounced gooeys), which allow users to interact
with a program in a graphical environment

Thinking about objects in these two types of applications makes sense. For example, a city
might want to develop a program that simulates traffic patterns and controls traffic signals
to help prevent tie-ups. Programmers would create classes for objects such as cars and
pedestrians that contain their own data and rules for behavior. For example, each car has a
speed and a method for changing that speed. The specific instances of cars could be set in
motion to create a simulation of a real city at rush hour.

Creating a GUI environment for users is also a natural use for object orientation. It is easy
to think of the components a user manipulates on a computer screen, such as buttons
and scroll bars, as similar to real-world objects. Each GUI object contains data—for
example, a button on a screen has a specific size and color. Each object also contains
behaviors—for example, each button can be clicked and reacts in a specific way when
clicked. Some people consider the term object-oriented programming to be synonymous
with GUI programming, but object-oriented programming means more. Although many
GUI programs are object oriented, not all object-oriented programs use GUI objects.
Modern businesses use object-oriented design techniques when developing all sorts of

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-202

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Comparing Procedural and Object-Oriented Programming Concepts

business applications, whether they are GUI applications or not. In the first 13 chapters of
this book, you will learn object-oriented techniques that are appropriate for any program
type; in the last chapters, you will apply what you have learned about those techniques
specifically to GUI applications.

Understanding object-oriented programming requires grasping three basic concepts: :.
7

e Encapsulation as it applies to classes as objects

e Inheritance

e DPolymorphism

Understanding Classes, Objects, and Encapsulation

In object-oriented terminology, a class is a group or collection of objects with common
properties. In the same way that a blueprint exists before any houses are built from it, and

a recipe exists before any cookies are baked from it, a class definition exists before any
objects are created from it. A class definition describes what attributes its objects will have
and what those objects will be able to do. Attributes are the characteristics that define an
object; they are properties of the object. When you learn a programming language such as
Java, you learn to work with two types of classes: those that have already been developed by
the language’s creators and your own new, customized classes.

An object is a specific, concrete instance of a class. Creating an instance is called
instantiation. You can create objects from classes that you write and from classes written
by other programmers, including Java’s creators. The values contained in an object’s
properties often differentiate instances of the same class from one another. For example,
the class Automobile describes what Automobile objects are like. Some properties of the
Automobile class are make, model, year, and color. Each Automobile object possesses the
same attributes, but not necessarily the same values for those attributes. One Automobile
might be a 2014 white Ford Taurus and another might be a 2018 red Chevrolet Camaro.
Similarly, your dog has the properties of all Dogs, including a breed, name, age, and
whether the dog’s shots are current. The values of the properties of an object are referred
to as the object’s state. In other words, you can think of objects as roughly equivalent to
nouns (words that describe a person, place, or thing), and of their attributes as similar to
adjectives that describe the nouns.

When you understand an object’s class, you understand the characteristics of the object.
If your friend purchases an AutomobiTe, you know it has a model name, and if your

friend gets a Dog, you know the dog has a breed. Knowing what attributes exist for classes
allows you to ask appropriate questions about the states or values of those attributes. For
example, you might ask how many miles the car gets per gallon, but you would not ask
whether the car has had shots. Similarly, in a GUI operating environment, you expect each
component to have specific, consistent attributes and methods, such as a window having a
title bar and a close button, because each component gains these properties as a member
of the general class of GUI components. Figure 1-2 shows the relationship of some Dog
objects to the Dog class.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-202

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Creating Java Programs

By convention, programmers using Java begin their class names with an uppercase letter. Thus,

the class that defines the attributes and methods of an automobile probably would be named
Automobile, and the class for dogs probably would be named Dog. This convention, however, is
not required to produce a workable program.

. 8 Dog class definition Dog class instances (objects)

\/ - -

. & &
Every Dog that is Z k Z 5
created will have a: S | [=
N : :
ame ; s ; S

Age 2 Tl b) 2 2 |
Breed Ginger Bowser Roxy

6 2 1
Shot status Akita Retriever Beagle

Up to date Up to date Up to date

Figure 1-2 Dog class definition and some objects created from it

Besides defining properties, classes define methods their objects can use. A method is a
self-contained block of program code that carries out some action, similar to a procedure
in a procedural program. An Automob1ile, for example, might have methods for moving
forward, moving backward, and determining the status of its gas tank. Similarly, a Dog
might have methods for walking, eating, and determining its name, and a program’s

GUI components might have methods for maximizing and minimizing them as well as
determining their size. In other words, if objects are similar to nouns, then methods are
similar to verbs.

In object-oriented classes, attributes and methods are encapsulated into objects.
Encapsulation refers to two closely related object-oriented notions:

e Encapsulation is the enclosure of data and methods within an object. Encapsulation
allows you to treat all of an object’s methods and data as a single entity. Just as an actual
dog contains all of its attributes and abilities, so would a program’s Dog object.

e Encapsulation also refers to the concealment of an object’s data and methods from
outside sources. Concealing data is sometimes called information hiding, and concealing
how methods work is implementation hiding; you will learn more about both terms in
the chapter “Using Methods, Classes, and Objects” Encapsulation lets you hide specific
object attributes and methods from outside sources and provides the security that keeps
data and methods safe from inadvertent changes.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-202

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Comparing Procedural and Object-Oriented Programming Concepts

If an object’s methods are well written, the user can be unaware of the low-level details

of how the methods are executed, and the user must simply understand the interface

or interaction between the method and the object. For example, if you can fill your
Automobile with gasoline, it is because you understand the interface between the gas pump
nozzle and the vehicle’s gas tank opening. You don’t need to understand how the pump
works mechanically or where the gas tank is located inside your vehicle. If you can read 9 .
your speedometer, it does not matter how the displayed figure is calculated. As a matter of

fact, if someone produces a superior, more accurate speed-determining device and inserts

it in your Automobile, you don't have to know or care how it operates, as long as your

interface remains the same. The same principles apply to well-constructed classes used in

object-oriented programs—programs that use classes only need to work with interfaces.

Understanding Inheritance and Polymorphism

An important feature of object-oriented program design that differentiates it from procedural
program design is inheritance—the ability to create classes that share the attributes and
methods of existing classes, but with more specific features. For example, Automobile is a
class, and all Automobile objects share many traits and abilities. Convertible is a class that
inherits from the Automobile class; a Convertible is a type of Automobi Te that has and can
do everything a “plain” Automobile does—but with an added ability to lower its top. (In turn,
Automobile inherits from the Vehicle class.) Convertible is not an object—it is a class.

A specific Convertible is an object—for example, my1967BTueMustangConvertible.

Inheritance helps you understand real-world objects. For example, the first time you
encounter a convertible, you already understand how the ignition, brakes, door locks,

and other systems work because you realize that a convertible is a type of automobile.
Therefore, you need to be concerned only with the attributes and methods that are “new”
with a convertible. The advantages in programming are the same—you can build new
classes based on existing classes and concentrate on the specialized features you are adding.

A final important concept in object-oriented terminology (that does not exist in procedural
programming terminology) is polymorphism. Literally, polymorphism means many
forms—it describes the feature of languages that allows the same word or symbol to be
interpreted correctly in different situations based on the context. For example, although
the classes Automobile, Sailboat, and Airplane all inherit from Vehicle, methods

such as turn and stop work differently for instances of those classes. The advantages of
polymorphism will become more apparent when you begin to create GUI applications
containing features such as windows, buttons, and menu bars. In a GUI application, it is
convenient to remember one method name, such as setColor or setHeight, and have it
work correctly no matter what type of object you are modifying.

it carved in a tree between two names, you understand that the names are linked romantically. Because
the symbol has diverse meanings based on context, it is polymorphic. Chapters 10 and 11 provide more
information about inheritance and polymorphism and how they are implemented in Java. Using Java, you
can write either procedural or object-oriented programs. In this book, you will learn about how to do both.

ﬂ When you see a plus sign (+) between two numbers, you understand they are being added. When you see

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-202

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

